
MIT OpenCourseWare 
http://ocw.mit.edu 

Electromechanical Dynamics 

For any use or distribution of this textbook, please cite as follows: 

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics. 
3 vols. (Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons 
Attribution-NonCommercial-Share Alike 

For more information about citing these materials or 
our Terms of Use, visit: http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


Chapter 4

ROTATING MACHINES

4.0 INTRODUCTION

The most numerous and the most widely used electromechanical device
in existence is the magnetic field type rotating machine. Rotating machines
occur in many different types, depending on the nature of the electrical and
mechanical systems to be coupled and on the coupling characteristics desired.
The primary purpose of most rotating machines is to convert energy between
electrical and mechanical systems, either for electric power generation or
for the production of mechanical power to do useful tasks. These machines
range in size from motors that consume a fraction of a watt to large generators
that produce 109 W. In spite of the wide variety of types and sizes and of
methods of construction, which vary greatly, most rotating machines fall
into two classes defined by their geometrical structures-namely smooth-air-
gap and salient-pole. The analysis of the electromechanical coupling systems
in rotating machines can thus be reduced to the analysis of two configura-
tions, regardless of the size or type of machine. As is to be expected, some
machines do not fit our classification; they are not numerous, however,
and their analyses can be performed by making simple changes in the models
and techniques presented in this chapter.

After defining the two classes of machine geometry (smooth-air-gap and
salient-pole), we establish the conditions necessary for average power con-
version and use them as a basis for defining different types of machine. We
also derive the equations of motion for the different machine types and solve
them in the steady state to describe the machines' principal characteristics.
The behavior of machines under transient conditions is covered in Chapter 5.

Before starting the treatment of machines it is important to recognize
several significant points. First, as is evident from the treatment, a rotating
machine is but one specific embodiment of a more general class of electro-
mechanical devices defined in Chapter 3, and, as such, is conceptually quite
simple. In a practical configuration, such as a polyphase machine, the
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number of terminal pairs is great enough to make the mathematical descrip-
tion seem lengthy. In no case should mathematical complexity be mistaken for
conceptual difficulty. The analysis of rotating machines is conceptually simple
and mathematically complex. As our treatment unfolds, it will become clear
that there are geometrical and mathematical symmetries that imply simplifica-
tion techniques. These techniques have been developed to a high degree of
sophistication and are essential in the analysis of machine systems. Because
our interest here is in the basic physical processes, we forego the special
techniques and refer the reader to other texts.*

4.1 SMOOTH-AIR-GAP MACHINES

All rotating machines that fit in the smooth-air-gap classification can be
represented schematically by a physical structure like that shown in end

Stator magnetic axis

slot

rcoil

or tooth
Rotor

Rotor

Rotor to

Fig. 4.1.1a Geometry of smooth-air-gap rotating machine showing distributed windings
on stator and rotor of a single-phase machine.

* See, for example, D. C. White and H. H. Woodson, ElectromechanicalEnergyConversion,
Wiley, New York, 1959, Chapters 4 and 7 to 10.
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view in Fig. 4.1.1a. Pictures of a stator and a rotor Stator axis
that fall into this classification are shown in Figs.
4.1.2 and 4.1.3.

In the structure of Fig. 4.1.1a conductors are laid
in axial slots that face the air gap. The number of
conductors in each slot depends on the type and
size of the machine and varies from 1 in large turbo-
generators to 10 to 12 in small induction machines.
The conductors of one circuit on one member are
in series or series-parallel connection at the ends of
the machine. (Note the end turns in Figs. 4.1.2 and
4.1.3.) The circuits are arranged so that a current
in one winding will produce the antisymmetrical

axis

pattern about an axial plane indicated by the dots
Fig. 4.1.1b Schematic rep-and crosses in Fig. 4.1.1a. This axial plane is the resentation of the induc-

plane of symmetry of the magnetic field produced tors constituting the rotor
by the currents and is therefore called the magnetic and stator windings shown
axis. The stator and rotor magnetic axes are shown in (a).
in Fig. 4.1.1.

The example in Fig. 4.1.1 has only one circuit (winding) on the stator and
one circuit on the rotor. Most machines have more than one circuit on each
member. In this case a slot will usually contain conductors from different
circuits. Nonetheless, the description given fits each circuit on the rotor or
stator.

The rotor is free to rotate and its instantaneous angular position 0 is, by
convention, the displacement of the rotor magnetic axis with respect to the
stator magnetic axis.

The structure of Fig. 4.1. la is called smooth air gap because it can be mod-
eled mathematically with sufficient accuracy by assuming that the magnetic
path seen by each circuit is independent of rotor position. Such a model
neglects the effects of slots and teeth on magnetic path as the angle is changed.
In a real machine (see Figs. 4.1.2 and 4.1.3) the slots and teeth are relatively
smaller than those shown in Fig. 4.1.1a. Moreover, special construction
techniques, such as skewing the slots of one member slightly with respect to
a line parallel to the axis,* minimize these effects. In any case, the essential
properties of a machine can be obtained with good accuracy by using a
smooth-air-gap model, but slot effects are always present as second-order
effects in machine terminal characteristics and as first-order problems to
machine designers.

* For constructional details of rotating machines see, for example, A. E. Knowlton, ed.,
Standard Handbook for Electrical Engineeers, 9th ed., McGraw-Hill, New York, 1957,
Sections 7 and 8. This also includes numerous references to more detailed design treatments.
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Rotating Machines

Fig. 4.1.2 Stator (armature) of an induction motor. This is an example of a smooth-air-
gap stator. (Courtesy of Westinghouse Electric Corporation.)

4.1.1 Differential Equations

In terms of the conventions and nomenclature for lumped-parameter
systems introduced in Chapter 3, the device in Fig. 4.1.1 has magnetic field
electromechanical coupling with two electrical terminal pairs and one
rotational mechanical terminal pair. Thus the coupling system can be
represented symbolically, as in Fig. 4.1.4.

It is conventional practice in machine analysis to assume electrical linearity
(no saturation in stator or rotor magnetic material)*; consequently, the
electrical terminal relations can be written in terms of inductances that can
be functions of the angle 0 (see Section 2.1.1 of Chapter 2). The further
assumption of a smooth air gap indicates that because the field produced by

* Magnetic saturation in machines is quite important, but it is conventionally treated as a
perturbation of the results of an analysis such as we will do. See, for example, White and
Woodson, op. cit., pp. 532-535.
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Fig. 4.1.3 Rotor of a wound-rotor induction machine. This is an example of a smooth-
air-gap rotor. (Courtesy of Westinghouse Electric Corporation.)

each coil is unaffected by rotor position the self-inductances will be inde-
pendent of rotor position and the mutual inductance will depend on rotor
position. Hence the terminal relations for the coupling system of Fig. 4.1.1
as represented symbolically in Fig. 4.1.4 can be written as

2, = L,i, + L,(O)i,, (4.1.1)

2,= L,,(O)i, + Lrir, (4.1.2)

T = i,dL(O) (4.1.3)
dO

where L, and LI are the constant self-inductances, L,,(O) is the angular-
dependent mutual inductance, and the variables (2,, A4,i,, ir, To, 0) are

is

+ 0-

X.

+ 0-.-----
Xr

Lossless magnetic field
system of Fig. 4.1.1

Xs = Lsi, + Lsr(O)ir

Xr = Lar(9)is + Lrir

Teo= Isr dO

Te

------- o++

0

Fig. 4.1.4 Symbolic representation of coupling system in Fig. 4.1.1.

4.1.1
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defined in Figs. 4.1.1 and 4.1.4. The torque TO, given by (4.1.3), was derived
by the method of Chapter 3 [(g) in Table 3.1].

From (4.1.1) to (4.1.3) it is clear that we need to know only how the
mutual inductance L,, varies with angle to proceed with an analysis of the
electromechanical coupling in this machine. A similar configuration with
only two slots on the stator and two slots on the rotor was analyzed in
Example 2.1.2 of Chapter 2. With reference to that example and to the
symmetries of the windings in Fig. 4.1.1a, the mutual inductance can be
expressed in the general form

L,,(0) = M1 cos 0 + M3 cos 30 + M. cos 50 + - . (4.1.4)

This is a cosine series containing only odd harmonics. Thus the mutual
inductances at 0 and at -0 are the same, the mutual inductance at (0 + nr)

is the negative of the inductance at 0, and the mutual inductance at (-0 - 1r)
is the negative of the inductance at -0. This symmetry is justified by con-
sidering qualitatively how the flux due to stator current links the rotor
winding as the rotor position is varied.

The winding distribution around the periphery of alternating current
machines is normally designed to enhance the fundamental component of
mutual inductance M1 and to suppress all higher harmonics. The purpose of
this design criterion is to minimize unwanted harmonic current generation
in the machine. On the other hand, in the design of dc machines, other
criteria are used and several of the harmonics of (4.1.4) are present in appreci-
able amounts. Nonetheless, it suffices for the purposes here to assume that
the mutual inductance is represented by the space fundamental term only.
Such an assumption simplifies the analyses, does not eliminate any funda-
mental properties of machines, and can be used as the basis for a complete
analysis, if we assume that all harmonics are present.* Thus for the remainder
of this analysis the mutual inductance L,(0) is specified as

L,(0) = M cos 0. (4.1.5)

and the three terminal relations (4.1.1) to (4.1.3) become

2, = Li, + Mi, cos 0, - (4.1.6)

A, = Mi, cos 0 + L,i,, (4.1.7)

T" = -i,i,M sin 0. (4.1.8)

Before beginning a study of the energy conversion properties of the lossless
coupling part of the machine in Fig. 4.1.1, it would be worthwhile to inquire
into the circuit representation of a machine, including the essential param-
eters of the machine by itself, which are illustrated in the equivalent circuit
of Fig. 4.1.5. On the electrical side the windings have resistances R, and R,

* For the general analysis see White and Woodson, op. cit., Chapter 11.

_1_IL__
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Lossless magnetic-field
system of Fig. 4.1.1

X8 = Lsis + Mir cos 0

Xr = Mi, COS 6 + Lrir

T
e

= - isirM sin 0

Jr

+

Br TO,
0 B -1. TmI

iVC

damper damper

Fig. 4.1.5 Equivalent circuit for machine in Fig. 4.1.1.

which are treated as series resistances external to the lossless coupling system.
There are additional losses in the iron (hysteresis and eddy-current losses)
which are not included here because they are usually small enough to be
treated as a simple perturbation.* On the mechanical side the essential

parameters that must be included are the rotor inertia J, and losses that occur
because of friction in bearings and in sliding electrical contacts for exciting
the rotor and because of windage losses due to rotation of the rotor in a gas,
usually air or hydrogen. It is normally sufficient to represent these mechan-
ical losses as a combination of viscous (Br) and coulomb (To,) friction, as
shown in Fig. 4.1.5. The sources included in Fig. 4.1.5, v,, v,, and Tm, are
general. Any or all of them may be independently set or they may be depend-
ent on some variable. They may represent passive loads. In addition, they
can be replaced by other sources, that is, the electrical terminal pairs can be
excited by current sources and the mechanical terminal pair can be excited
by a position or velocity source. The point of including the sources is to
indicate that, in addition to the essential machine parameters, external
circuits must be included before the machine can be made to operate usefully.

Using the equivalent circuit of Fig. 4.1.5, we can write the differential
equations that describe the system:

0, = R i, + - (4.1.9)
dt

vr = Rrir + d (4.1.10)
dt

d20 dO dO/dt
Tm+ Te = Jr d + Br + Tor dOdt (4.1.11)

dt2 dt IdO/dtl

* See, for example, A. E. Fitzgerald and C. Kingsley, Jr., Electric Machinery, 2nd ed.,
McGraw-Hill, New York, 1961, Chapter 7. Although electrical losses can be treated as
perturbations when analyzing the behavior of a machine, these losses are vitally important
in determining the machine's rating because it is set by thermal limitations in transferring
heat generated by losses out of the machine.

i Te

+

+

._______>i, T
e
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Once the sources (or loads) v,, v,, and Tm are defined, these three equations
with the terminal relations (4.1.6) to (4.1.8) form a complete description of
the dynamics of the system, including the machine and the electric and
mechanical circuits connected to it.

4.1.2 Conditions for Conversion of Average Power

We next consider the problem of finding the conditions under which the
electromechanical coupling system of the machine in Fig. 4.1.1 can convert
average power between the electrical and mechanical systems. For this
problem a steady-state analysis of the coupling system in Fig. 4.1.4 with ideal
sources will suffice. Once the conditions are established, the analysis can be
generalized to include nonideal sources and transient conditions.

For this problem the coupling system of Fig. 4.1.4 will be excited by the
ideal sources indicated in Fig. 4.1.6. The specific time dependences of these
sources are

i,(t) = I. sin c,t, (4.1.12)

i,(t) = I,sin ,t, (4.1.13)

0(t) = Wot + y, (4.1.14)

where I,s ,Ir, s, to,, and y are positive constants and t is the time.
We now ask for the conditions under which the machine with the steady-

state excitations of (4.1.12) to (4.1.14) can convert average power between the
electrical and mechanical systems. To find these conditions we evaluate the
instantaneous power p, flowing from the coupling system into the position
source

dO
P. = T - Teom. (4.1.15)

dt

Then substitution from (4.1.12) and (4.1.13) into (4.1.8) and of that result
into (4.1.15) yield

p, = -mosl,M sin o,t sin w,t sin (ot + y). (4.1.16)

is

ii.

ir-)

Lossless coupling system
for machine in Fig. 4.1.1

Te

.+ +

Fig. 4.1.6 Excitations used in derivation of conditions for average power conversion.
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To ascertain under what conditions this power can have an average value,
trigonometric identities* are used to put (4.1.16) in the form

Pm CIIM (sin [(wu + o, - )t + y] + sin [(o - o, + co)t + y]
4

- sin [(cow + co, + w,.)t + y] - sin [((W, - ow,- co,)t + y]}. (4.1.17)

Because a sinusoidal function of time has no average value, (4.1.17) can have
a time-average value only when one of the coefficients of t is zero. These
four conditions, which cannot in general be satisfied simultaneously, can be
written in the compact form

, = +, ± Cv,; (4.1.18)
for example, when

(, = -W(, + W,

wmlsIrM
pm(av) = sin y,

4
and, when

,M= CO, + Or,

pm(av) = sin y.
4

It is evident from these expressions that a necessary condition for average
power conversion is the frequency condition of (4.1.18). Sufficient conditions
for average power conversion are (4.1.18) and sin y # 0.

As a result of this analysis, we can state that the whole field of machine
theory for smooth-air-gap machines is concerned with how to satisfy the
frequency condition of (4.1.18) with the available electrical and/or mechan-
ical sources to obtain the machine characteristics needed for a particular
application. It is just this process that has led to the several different machine
types presently used. The frequency relations provide the starting point in the
invention of new machine types for unusual applications.

4.1.3 Two-Phase Machine

Before describing the different standard machine types, how they are
excited to satisfy (4.1.18), and what their essential characteristics are, the
smooth-air-gap model of Fig. 4.1.1 will be modified to allow a more realistic
portrayal of the energy conversion properties of rotating machines.

It is evident by examination of (4.1.17) that when one of the four possible
conditions of (4.1.18) is satisfied, the corresponding term in (4.1.17) becomes
a constant, but the other three terms are still sinusoidal time functions

* sin x sin y = j[cos ( - y) - cos (x + y)]; sin xcos y = [sin (x - y) + sin (x + y)].

4.1.2
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Stator a-winding
magnetic axis

t

b-winding
etic axis

Fig. 4.1.7a Cross-sectional view of a two-phase machine with distributed windings
represented by single-turn coils.

and each term represents an alternating power flow. These alternating power
flows have no average values and can cause pulsations in speed and vibrations
that are detrimental to machine operation and life. The alternating flow can
be eliminated by adding one additional winding to both rotor and stator,
as illustrated in Fig. 4.1.7a. The windings of Fig. 4.1.7a are represented as
being concentrated in single slots for simplicity of illustration. In actual
machines the windings are distributed like those of Fig. 4.1.1a. and a single
slot can carry conductors from both windings. In Fig. 4.1.7 windings a on
rotor and stator represent the original windings of Fig. 4.1.1. Windings b
on rotor and stator are identical to the windings a in every respect, except
that they are displaced mechanically 900 in the positive 0-direction.

The two additional windings in Fig. 4.1.7a require two additional electrical
terminal pairs and, using the assumptions of constant self-inductances and
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Stator (b) axis

Fig. 4.1.7b Schematic representation of balanced two-phase machine in (a) showing
relative orientations of magnetic axes.

sinusoidally varying mutual inductances discussed before, the terminal
relations are now written as

la. = Loia, + Mia, cos 0 - Mib sin 0, (4.1.19)

Ab, = Lib, + Mi 7, sin 0 + Mi.b cos 0, (4.1.20)

ar = Lia, + Mia, cos 0 + Mia, sin 0, (4.1.21)

Abr = L,4i, - Mia, sin 0 + Mib, cos 0, (4.1.22)

To = M[(i.ib,, - ibria,) cos 0 - (iaria, + ibrib,) sin 0]. (4.1.23)

Study of the relative winding geometry in Fig. 4.1.7a verifies the correctness of
the mutual inductance terms in the electrical terminal relations. Once again,
the torque T e has been found by using the techniques of Chapter 3 [see (g) in
Table 3.1].

The windings of Fig. 4.1.7 are called balanced two-phase windings* because
excitation with balanced two-phase currents will result in constant power
conversion with no alternating components. To show this the terminal
variables of the machine are constrained by the balanced, two-phase, current
sources

ias = I, cos owt, (4.1.24)

iba = I, sin w,t, (4.1.25)

iar = Ir cos &at, (4.1.26)

ibr = I, sin o,t (4.1.27)

* More is said about phases in Section 4.1.7.

4.1.3

---- ---
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and by the angular position source

S= Cot + y. (4.1.28)

The use of these terminal constraints with the instantaneous power given
by (4.1.15) and the torque To given by (4.1.23) yields, after some trigono-
metric manipulation,*

Pm = -mo,MI,,. sin [(co, - co, + ,)t + y]. (4.1.29)

This power can have an average value only when the coefficient of t is zero,
that is, when

wO = os - To, (4.1.30)

for which condition (4.1.29) reduces to

p,. = - wmMIr,sin y. (4.1.31)

This is still the instantaneous power out of the machine, but it is now constant
in spite of the ac electrical excitation. Note further that (4.1.30) is one of the
four conditions of (4.1.18). Thus the additional windings with proper excita-
tion have produced only a single frequency condition (4.1.30) for average
power conversion, and when this condition is satisfied the instantaneous
power is constant and equal to the average value.

The other three conditions of (4.1.18) can be achieved individually in the
machine of Fig. 4.1.7 with the excitations of (4.1.24) to (4.1.28) by changing
the time phase of one stator current and/or one rotor current by 1800.

When the two stator currents or the two rotor currents are unbalanced in
amplitude or the phase difference is changed from 900, the pulsating power
flow will again occur even when one of the conditions of (4.1.18) is satisfied.
The analysis of these situations is straightforward trigonometry and is not
carried out here.

4.1.4 Air-Gap Magnetic Fields

It is helpful for qualitative physical reasoning and for a more thorough
understanding of the coupling mechanism occurring in rotating machines
to think in terms of the magnetic fields that exist in the air gap. To develop
these ideas consider again the machine in Fig. 4.1.7a but with only the stator
excited by current sources. The assumption that rotor-to-stator mutual
inductance varies sinusoidally with rotor position implies that the flux
density produced in the air gap by a current in a winding varies sinusoidally
with angular position; that is, a current in stator winding a will produce an
air-gap flux density whose radial component is maximum along the magnetic
axis (positive in one direction, negative in the other) and varies sinusoidally

* sin (x - y) = sin x cos y - cos x sin y, cos (x + y) = cos x cosy - sin x sin y.
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between these extremes. We now assume that the stator windings of Fig.
4.1.7a are excited by the two-phase current sources of (4.1.24) and (4.1.25)
and look at the space distribution of radial air-gap flux density produced by
these currents at different instants of time. For this we use the angle y defined
in Fig. 4.1.7a to indicate position in the air gap and we recognize that the air-
gap flux density produced by current in a winding is proportional to the
current producing it. Consequently, with reference to Fig. 4.1.7a, we can write
for the instantaneous radial flux density due to current in stator winding a

Bra = Brm cos ot cos y (4.1.32)
and for stator winding b

Bb = Brm sin wt sin y, (4.1.33)

where B,, is a constant related to the current amplitude I,. These component
flux densities and the resultant air-gap flux density are sketched for five values
of time in Fig. 4.1.8. For the interval shown the resultant flux density (B,) is
sinusoidally distributed in space, has a constant amplitude (Bm), and moves
in the positive u-direction as time progresses. An extension of this process
would show that these facts remain true for all time and that the resultant
flux density makes one revolution in (2nr/olw) sec or it rotates with an angular
speed o, .

A similar argument for the rotor of Fig. 4.1.7a with the excitation of
(4.1.26) and (4.1.27) shows that these rotor currents produce a flux density
in the air gap that is sinusoidally distributed around the periphery, has
constant amplitude, and has an angular velocity ow, with respect to the rotor.

It is to be expected from simple considerations of the tendency of two
magnets to align themselves, that a steady torque and therefore constant
power conversion will occur when the rotor and stator fields are fixed in
space relative to each other and the rotor is turning at constant angular
velocity. To accomplish this a mechanical speed given by (4.1.30) is required.
Thus the condition for average power conversion can be interpreted as
establishing the condition under which the stator and rotor fields, both of
which rotate with respect to the members carrying the excitation currents,
are fixed in space relative to each other. Furthermore, we expect the torque
(and average power) to be a function of the constant angle of separation of
the axes of symmetry of the two fields. This variation with angle is indicated
by the sin y term in (4.1.31). Examination of (4.1.24) to (4.1.28) with the
ideas introduced in Fig. 4.1.8 shows that y is the angle by which the rotor
magnetic field axis precedes the stator magnetic field axis around the air gap
in the positive 0-direction. Thus the torque [or power in (4.1.31)] is propor-
tional to (-sin y).

It must be recognized that this analysis of air-gap magnetic fields is
idealized. With excitation provided by finite-size coils in finite-size slots and
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Fig. 4.1.8 Component (B,a and Bb,) and resultant (B,) flux density distributions in a
balanced two-phase machine due to balanced two-phase stator currents.
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usually with equal numbers of turns in all slots, the air-gap flux density will
not be exactly sinusoidal. Nonetheless, the simple picture presented is a
design objective with ac machines and it yields remarkably accurate results
for practical machines. (See part (c) of Prob. 4.4.)

We now reconsider the machine of Fig. 4.1.1 with the excitations of
(4.1.12) to (4.1.14) and apply the rotating field ideas. Because the rotor-stator
mutual inductance is a sinusoidal function of space, the air-gap flux density
will still have a sinusoidal space distribution around the air gap. But now each
field, rotor and stator, being excited by a sinusoidal current in a single coil
keeps a fixed sinusoidal space distribution with respect to its exciting coil and
varies periodically in amplitude. Such an alternating field can be represented
by two constant-amplitude fields (B,, and Br_) rotating in opposite directions,
as illustrated for one quarter cycle of the stator excitation in Fig. 4.1.9.
Thus the stator excitation produces two such fields rotating with angular
velocity ow, with respect to the stator. Similarly, the rotor excitation
produces two fields rotating with angular velocity -o-, with respect to the
rotor. Thus each of the four conditions of (4.1.18) represents the situation in
which the mechanical speed is adjusted to the proper value to make one
component of rotor field fixed in space relative to one component of stator
field. When one of these conditions is satisfied, the other three conditions
are not, and the interactions of these other field components give rise to
alternating torque and alternating power flow. As a consequence, the
addition of the second set of windings in Fig. 4.1.7 can be interpreted as
being for the purpose of eliminating those field components that do not
produce average power conversion.

4.1.5 Discussion

Although these analyses have been made for special cases, the method is
quite general; for instance, the analytical techniques are the same when the
restriction of a space fundamental mutual inductance variation is removed
and the more general form of (4.1.4) is used. Furthermore, the windings
added to the machine of Fig. 4.1.1 to obtain the machine of Fig. 4.1.7 need
not be identical to the original windings, nor must they be exactly in space
quadrature with them. The only requirement for a correct analysis of the
coupling mechanisms is that the electrical terminal relations be accurate
representations of the physical system under study. The particular restrictions
chosen here are representative of design objectives for practical rotating
machines and of techniques used in their analysis.

The assumption has been made that stator circuits are excited by currents
of the single frequency wco and rotor circuits are excited by currents of the
single frequency o,. This analysis is easily generalized to any number of

1 11~_1_____
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frequencies on each member (rotor and stator). The result is that for a com-
ponent of current at a particular frequency to participate in the average
power conversion process there must be a current on the other member
whose frequency combines with the mechanical velocity and the other
electrical frequency to satisfy one of the four conditions of (4.1.18).

The analyses have been done by assuming a steady-state problem with
electrical current sources and a mechanical position source. The results are
still valid when the sources are changed to voltage and torque sources or to
dependent sources of any type. Moreover, transient problems can be analyzed
by writing the complete differential equations for the machine and the
electrical and mechanical circuits to which it is connected and using
the techniques of Chapter 5. The steady-state analysis is representative of the
final conditions usually reached in machine operation. Transients of interest
include the one necessary to reach steady-state conditions (e.g., starting tran-
sient) and those that occur when something forces the operation away from
steady-state conditions (e.g., a sudden change in load torque on a motor).

The discussion of air-gap magnetic fields was based on the simple model of
a sinusoidal distribution of flux density in space and a sinusoidal variation
of flux density with time. When the space distributions and time variations
are not sinusoidal they can often be represented by Fourier series. Con-
sequently, our discussion of air-gap magnetic fields can be applied to individ-
ual Fourier components to obtain insight into the interactions occurring
in the machine.

In summary, our look at the smooth-air-gap machine in terms of simple
models has a lot more generality than we at first might suspect. These simple
models are building blocks with which we can build understanding of the
behavior of complex machines.

4.1.6 Classification of Machine Types

The results of the steady-state analysis expressed as (4.1.18) for the
configuration of Fig. 4.1.1 and as (4.1.30) for the machine of Fig. 4.1.7 are
used to define conventional machine types. From one viewpoint rotating-
machine theory boils down to the practical ways of satisfying the frequency
conditions for average power conversion, given the available electrical and
mechanical sources and loads and the desired machine characteristics.

In the following sections we indicate how the frequency condition is met
and what the steady-state characteristics are for several conventional machine
types.

4.1.6a Synchronous Machines

Consider the two-phase machine of Fig. 4.1.7 with direct current applied
to the rotor (w, = 0) and balanced, two-phase currents of frequency wc,

~__I·_I_ II
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applied to the stator. The condition of (4.1.30) indicates that the machine can
convert average power only when the rotor is turning with the single value
of speed

W = S,.

These constraints yield a synchronous machine, so named because it can
convert average power only at one mechanical speed--the synchronous
speed co, determined by the stator excitation frequency.

In a similar way we can also make a synchronous machine by applying
direct current to the stator and alternating current to the rotor. In this case
the synchronous speed is determined by the frequency of the rotor currents.

The most common application of a smooth-air-gap, synchronous machine
is as the generator, called alternator or turboalternator, that is driven by a
steam turbine to generate power. In this machine the ac or armaturewindings
are on the stator and the dc or field winding is on the rotor. The direct
current for the field winding is usually fed through carbon or metal-graphite
brushes that make contact with slip rings on the rotor. A large turboalter-
nator with the end bell removed is shown in Fig. 4.1.10.

Fig. 4.1.10 Turboalternator partly assembled for test. This is a 3600-rpm, 192,000-kVA
machine showing rotor in place with the upper half of the bearing and the end shield
removed. The slip rings (or collector rings) for supplying current to the rotor (field)
winding are in the foreground. (Courtesy of General Electric Company.)

4.( 
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rRotor axis

ir Stator (b) axis
+

S r -T bs +) ibs

Fig. 4.1.11 Schematic representation of smooth-air-gap synchronous machine with field
(dc) winding on the rotor and a balanced two-phase stator (armature) winding.

Some of the principal steady-state characteristics of synchronous machines
can be illustrated by considering the machine shown schematically in Fig.
4.1.11. The electrical and mechanical terminal relations are

,, = Li,, + Mir cos O, (4.1.35)

Ai, = L,i5, + Mi, sin 0, (4.1.36)

7, = L4i, + M(ia, cos 0 + i,4 sin 0), (4.1.37)

T, = Mir(i,, cos 0 - i,, sin 0). (4.1.38)

[These are (4.1.19) to (4.1.21) and (4.1.23) with ib, = 0 and 2,, and i,, replaced
by A, and i, , respectively.]

Synchronous machines are normally operated with the stator windings
excited by voltage sources. We express our results in these terms. We find it
convenient, however, to constrain the stator winding currents analytically
with the balanced, two-phase set

is = I cos wt, (4.1.39)

i, = I, sin wt, (4.1.40)

and to consider I, as an unknown in the analysis. We constrain the rotor
current to be constant

ir = Ir (4.1.41)

and the angle 0 with the position source

0 = wt + 7. (4.1.42)

We see that the condition for average power conversion (4.1.30) is auto-
matically satisfied.

_~I_
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It can be verified by direct substitution of (4.1.39) to (4.1.42) into (4.1.37)
that the rotor flux linkage 2r is constant. Thus, under steady-state conditions,
there is no voltage induced in the rotor circuit, and we could have applied a
constant-voltage source, as we normally do in practice. In such a case the
rotor current is constant and determined only by the applied voltage and
rotor circuit resistance. Consequently, there is no loss in generality by specify-
ing the rotor current as in (4.1.41). For transient conditions there is a differ-
ence between voltage and current excitation of the rotor.

Substitution of (4.1.39) to (4.1.42) into (4.1.38), yields for the instantaneous
torque produced by the machine

T" = - MIrI,sin y. (4.1.43)

For the analysis of the energy conversion properties of large synchronous
machines the mechanical (friction) losses are neglected because they are a
small fraction of the power converted by the machine. Thus we follow this
procedure and assume that the torque expressed by (4.1.43) is applied to
the mechanical load (or source) on the shaft [Tm in Fig. 4.1.5].

To find the electrical terminal characteristics we need to evaluate the
stator terminal voltages. Substitution of (4.1.39) to (4.1.42) into (4.1.35)
and (4.1.36) yields

2as = Lsj,cos wt + MI, cos (wt + y), (4.1.44)
A,, = L,I, sin wt + MI, sin (owt + ). (4.1.45)

These two flux linkages are sinusoidal functions of time with a single fre-
quency w. Moreover, 2i, is the same as A,,, except for a shift of 90' in time
phase. The currents exciting these two windings are identical in amplitude
and different in phase by the same 900. Consequently, we expect the electrical
behavior of the two stator windings to be the same except for this phase
shift; thus we analyze only winding a. When considering power into or out
of the stator, we multiply the result for one winding by two to account for
the second winding.

As is the usual practice in the analysis of the energy conversion properties
of large synchronous machines, we neglect winding resistances and express
the terminal voltage of stator winding a as

dAa• d
Vas _= -- [L,I, cos wt + MI, cos (wt + y)]. (4.1.46)

dt dt

Because this expression involves sinusoidal functions of time with the single
frequency o), it is convenient to express the quantities in terms of complex
functions and to use vector diagrams to illustrate electrical properties
Hence we write

ias = Re (I,ejyt), V,, = Re (1sejt'), (4.1.47)
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where I, is real and J', is complex. We substitute this expression for the
voltage into (4.1.46) replace the time functions by their complex equivalents,

cos wt = Re (eJi"), cos (wt + y) = Re (ejYei•t),

drop the Re, and cancel the e ' t terms to get

P, = joiL,I, + jwoMIre I'. (4.1.48)

The last term in this equation is a voltage source that depends on rotor
current I, and rotor phase angle y. It is conventionally designated as

Ef = jwiMIrejI, (4.1.49)

the subscript f denoting dependence on field (rotor) current. The use of
(4.1.49) in (4.1.48) yields the expression

P, = jwLI, + ff. (4.1.50)

This steady-state stator (armature) terminal voltage is used to construct a
simple steady-state equivalent circuit for one phase of a balanced two-phase
synchronous machine with balanced excitation, as shown in Fig. 4.1.12.*
Note from this figure that because A• is independently adjustable the current

I, can be controlled in magnitude and phase relative to Ji and the synchro-
nous machine can act as a motor or generator. The quantity w,L, is conven-
tionally called the synchronous reactance and is simply the reactance of the
self-inductance of a stator winding.

The complex quantities in (4.1.50) and the equivalent circuit of Fig. 4.1.12
can be used to interpret the properties of a synchronous machine. To do this
we sketch the complex quantities as vectors on the complex plane for two
conditions in Fig. 4.1.13. To put our analysis in tune with convention we
define the torque angle 6 as measuredfrom P,
tn Vf as shown in Ficr 4 1 1 A imn le eo- jAL,

metrical construction illustrated in Fig. 4.1.13
shows that

woL,I, sin y = V, sin 6, (4.1.51)

where V. = If,. Thus from (4.1.43) and
(4.1.49)

Ef

T'= - E, V Fig. 4.1.12 Steady-state equiv-
S 2Lsin , (4.1.52) alent circuit for one phase of a

balanced two-phase synchronous
where Ef = Ifl". This is the expression for machinewithbalancedexcitation;
the torque normally used in the analysis of Et is defined by (4.1.49).

* This same process, which uses an equivalent circuit for one phase, is also applied to
machines with more than two phases.
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Imaginary Imaginary
axis axis

jwLsI,

Ef
Real

is axis

>0, 6>0 y< <0, <0
(a) (b)

Fig. 4.1.13 Diagrams showing relations among variables in synchronous machine: (a)
generator operation in which y and 6 (measured positive in the counterclockwise direction)
are positive; (b) motor operation in which y and 6 are negative.

synchronous machines. It is expressed in terms of the magnitude of the
stator voltage because this quantity is usually constant, as determined by the
source supplying (or absorbing) electrical power.

The instantaneous power into the stator windings is

Pe = Vasia + Vbs•bs. (4.1.53)

It can be verified with some algebra and trigonometry that this power is
equal to the mechanical power out of the shaft

pe = p,,, = a T " = -- sin 6. (4.1.54)
o) L,

Thus the electromechanical power conversion occurs at a constant rate
between the stator circuits and the mechanical system connected to the shaft.
The rotor (field) circuit does not participate in the conversion process
except to control the dependent source Ef. The power required to excite the
field winding as a fraction of the stator (armature) power rating varies from
0.5 per cent in large turboalternators to a few per cent in synchronous motors.
It is for this reason that the field winding is usually on the rotor, the result
being that sliding contacts have to handle less power.

When a synchronous machine is operated with a constant voltage supply
(V,) to the stator and a constant field current (constant Ef), the torque-angle
characteristic is the simple sinusoid shown in Fig. 4.1.14. The machine can

I _~
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Motor
operation -

V,Ef
m-
•21,

w
2
r.

Generator
operation

Pull-out
torque

Fig. 4.1.14 Torque versus torque angle for a synchronous machine with constant stator
voltage amplitude and constant rotor current.

supply any torque required by the shaft load (or supply) in the range

VEE VEfVE< T" < r
w2Ls w2 L,

and operate as a motor or generator. Any attempt to demand (or supply) a
torque outside this range will surpass the ability of the machine and it will
no longer run at synchronous speed and produce an average torque. This
process of loss of synchronism is called pulling out of step and the maximum
torque the machine can supply is called the pull-out torque.

We shall demonstrate one additional property of synchronous machines,
that of adjusting the power factor (phase angle between stator terminal
voltage and current) by varying the field (rotor) current. We shall illustrate
the property by using motor operation; however, the general features of the
analysis also hold for generator operation.

We assume motor operation with constant-amplitude, balanced, two-
phase voltages applied to the stator windings of the machine in Fig. 4.1.11.
A constant torque load T, is applied to the machine, and the field (rotor)
current I, can be set to different values. We neglect stator winding resistance
and friction losses. We consider three cases illustrated on the torque angle
curves of Fig. 4.1.15a, the vector relations among the variables being shown
in Figs. 4.1.15b, c, and d. Note two things in studying the vector diagrams
of Fig. 4.1.15. First, as the field current Ir is increased from a low value
I, to a high value I,,, the magnitude of the stator current passes through a
minimum. Second, for the same variation in I, the phase angle between
stator voltage and current reverses sign. An analysis of this type is used to
produce a so-called V-curve like that shown in Fig. 4.1.15e, which is a plot of
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Fig. 4.1.15 Illustration of the performance of a synchronous motor as the field excitation
is varied: (a) torque versus torque angle; (b) rotor current 1,1; (c) rotor current I2;
(d) rotor current Ira; (e) synchronous motor V-curve.

stator current amplitude as a function of field current with stator voltage
amplitude and load torque held constant. For small values of field current
the machine is said to be underexcited; it appears inductive to the electrical
sources and operates with a lagging power factor. For large values of field
current the machine is said to be overexcited; it appears capacitive to the
electrical sources and operates with a leading power factor.*

* Power factor is defined as cos 0, where 0 is the phase-angle between the current and
voltage. A power factor of unity indicates that the load is purely resistive. See, for example,
R. M. Kerchner and G. F. Corcoran, Alternating-Current Circuits, Wiley, New York, 1955.
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In many applications of synchronous motors the machines have adequate
field winding capacity for overexcitation and the capacitive characteristics
are used for power-factor correction. Special machines, called synchronous
condensers, are actually synchronous motors that run with no mechanical
load and are used as continuously variable capacitors to adjust power factor
and regulate voltage on electric power transmission systems.

In this presentation we have discussed only a few of the principal features
of synchronous machines. There are many others, depending on the applica-
tion, and they are studied by the same techniques. Our treatment is intended
to be only an introduction to synchronous-machine characteristics. A com-
plete study would fill a book by itself.*

In our analysis we used a two-phase machine as an example. Virtually all
synchronous machines manufactured are three-phase because the power
supply is usually three-phase. Three-phase synchronous machines have
the same energy conversion properties and steady-state characteristics as the
two-phase machine of our examples. In fact, a standard procedure in the
analysis of a three-phase machine is to transform the electrical variables to
obtain the equations for an equivalent two-phase machine. This simplifies
the mathematics in the analysis.t

This analysis was made with direct current applied to the rotor (field)
winding. The rotor can, and sometimes is, replaced by a permanent-magnet
rotor, an arrangement that has the two advantages of requiring no power to
maintain the field and no sliding electrical contacts. This also has two primary
disadvantages: (a) the amplitude of the magnetic field is fixed by the perma-
nent magnet and cannot be controlled externally during operation, and (b)
the magnetic flux densities obtainable with permanent magnet materials
are considerably smaller than those obtainable with current-excited, high-
permeability iron. As a result of the second disadvantage, permanent magnets
are normally used in small synchronous machines.

4.1.6b Induction Machines
An induction machine is conventionally defined as one in which single-

frequency alternating currents are fed into the stator circuits and the rotor
circuits are all short circuited. Rotor currents are obtained by induction
from the stator, hence the name.

To determine that an induction machine can convert average power,
consider again the machine of Fig. 4.1.7 with the stator currents constrained
by balanced two-phase sources.

ias = I, cos wo't, (4.1.55)
ib, = I, sin w,t, (4.1.56)

* See, for example, C. Concordia, Synchronous Machines, Wiley, New York, 1951.
t See, for example, White and Woodson, op. cit., Chapter 9.
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with the rotor circuits short-circuited

var = vbr = 0, (4.1.57)

and with the rotor constrained by the position source

0 = (wmt + Y. (4.1.58)

The terminal relations for the electromechanical coupling system are (4.1.19)
to (4.1.23).

In the analysis that follows we neglect the resistance of the stator windings.
This is standard practice when analyzing the energy conversion properties of
a large induction machine. The primary effect of stator winding resistance is
in heating the machine, and it therefore plays a major role in determining
the machine's rating. For reasons that will become clear subsequently, we
must retain the resistance of the rotor circuits in our analysis.

With the terminal constraints of (4.1.55) to (4.1.58) and with rotor circuit
resistance denoted by Rr, we write the differential equations for the two rotor
circuits:

di d
0 = R,iar + L,r d + MI, - [cos wt cos (cot+ y)

dt dt

+ sin co,t sin (wot + 7)] (4.1.59)

dib d
0 = R,if, + Lr d + MI, - [-cos w,t sin (wt + y)

dt dt

+ sin co,t cos (cot + y)]. (4.1.60)

The use of appropriate trigonometric identities* allows us to rewrite these
equations in the forms

MI,(o, - cor) sin [(w, - ow)t - y = L + Rria,, (4.1.61)
dt

-MI,(o, - ow) cos [(c), - wco)t - y] = L, +ýR,ib,. (4.1.62)
dt

The right sides are identical, linear, first-order differential operators with
constant coefficients. The left sides are sinusoidal voltage drives of equal
amplitudes, but 90 degrees phase difference (just like the stator currents).
Thus we need to consider only one of these equations for a solution.

As indicated by (4.1.61) and (4.1.62), both rotor currents will have fre-
quency (co, - co,) which exactly satisfies the condition of (4.1.30). Thus the
induction machine satisfies the condition for average power conversion at all
mechanical speeds. With finite rotor resistance an induction machine can

* cos (x - y) = cos x cos y + sin x sin y, sin (x - y) = sin x cos y - cos x sin y.
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Fig.4.1.16 Cutaway view of a squirrel-cage induction motor. (Courtesy of General Electric
Company.)

convert average power at all speeds except synchronous (co, = co,), and its
mode of operation (motor, generator, or brake) depends on the relative
values of o, and co8, as we shall see subsequently.

An induction motor can also be obtained by exciting the rotor with ac and
short-circuiting the stator circuits. This, however, requires that all the power
be fed into the machine through sliding electrical contacts (brushes on slip
rings), which is impractical in most cases in the light of the simple alternative.

Most induction machines have squirrel-cage rotors in which bare conduc-
tors are imbedded in slots in the rotor iron and are then all short-circuited
together at the ends by conducting rings. A cutaway view of such a motor is
shown in Fig. 4.1.16. The conductor assembly alone looks like a cage, hence
the name. Some special-purpose induction machines have rotor circuits
wound with insulated conductors with connections to the terminals made
through brushes and slip rings. The rotor for a wound rotor induction machine
was shown earlier in Fig. 4.1.3. Having access to the rotor circuits allows us
to connect different sources, or loads, or to short circuit the rotor circuits
externally and thereby obtain a variety of machine characteristics.
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For reasons that are stated in Section 4.2.2, all induction machines are
smooth-air-gap machines.

We shall now study the steady-state characteristics of induction machines
by using the constraints of (4.1.55) to (4.1.58). We first solve (4.1.61) for the
steady-state current in rotor circuit (a)*:

(W1 - Wm)MIs
iar _=_(Co - )M_ cos [(w, - Wm)t + a], (4.1.63)

N/Rr + (wý - o.m)2 L,2

where
7T

2
and

= tan1 ((- )L
R,

The current in rotor circuit b is identical except for a 90' phase shift indicated
by (4.1.62) [The cos in (4.1.63) is replaced by sin for ibr.]

As usual, we want to know how the machine behaves, as viewed from the
electrical input terminals; thus we wish to find the relation between voltage
and current. It is helpful at the same time to draw a steady-state electrical
equivalent circuit as we did for the synchronous machine.

It can be verified quite easily that for a balanced two-phase machine with
balanced two-phase excitation, as we have here, we need to consider only
one phase (stator circuit) because the behavior of the other circuit will be
identical except for a 900 phase shift.

We use (4.1.19) with the definition of terminal voltage to write

d 5,, d d
dVas = - (Li.,) + (Mi~ cos 0 - Mib sin 0). (4.1.64)

dt dt dt

Substitution from (4.1.55), (4.1.58), and (4.1.63) into this expression yields

d d (ow, - om)M 2 ls
vas -= (LI, cos ojt) + -

dt dt R,R2 + (( s - Cm).Lr2

x {cos [(w, - wm)t + C] cos (Wmt + 7)

- sin [(w, - om)t + oc] sin ()omt + y)}. (4.1.65)

A trigonometric identity is used to simplify the second term; thus

Vas = d (LI,cos o,t) + -d [ ( t - - - .
dt dt 1Rr2 + (w, - Owm)

2L, 2 2

(4.1.66)

* A review of sinusoidal steady-state circuit analysis is given in Section 5.1.
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It is now convenient to define the slip s as

= s - m (4.1.67)
CO

s

The slip is a measure of the difference between the actual mechanical speed
(wo) and the synchronous speed (co) expressed as a fraction of synchronous
speed. When the mechanical speed is less than the synchronous speed, the
slip is positive.

We now use the definition of slip s to rewrite (4.1.66) in the form

d d 'I 7v= , (L,I, cos cot) + Cos (t -, - -
dt dtls(R /s)2 + w,2L, 2

(4.1.68)
and we rewrite the definition of P in terms of slip s as

f = tan- 1 (oL, (4.1.69)
R,/s

We now use complex notation by defining

i, = Re (Ie'" C), c ost - P - 2) = Re (-je.ute-'P),

v., = Re (P,e3"t),
and rewrite (4.1.68) as

Ps = joL,I, + LM2 e-(4.1.70)
(Rr/s)2 + w2L, 2

This equation is conventionally represented by the steady-state equivalent
circuit of Fig. 4.1.17 in which we have indicated a complex amplitude ,. that
can be verified from the circuit to have the value

I -jMIe-(4.1.71)

I (R,IS)2 + o• 2L"2

Thus the second term in (4.1.70) is simply jio,Mt, as it should be for the
circuit in Fig. 4.1.17.

jwJ(L, - M) jwio,(Lr - M)

Rr/s

Fig. 4.1.17 Steady-state equivalent circuit for balanced two-phase induction machine
with balanced excitation.

4.1.6
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jiW(L 8-M) jW8(LI--M) R'

(1 - s)Rrls

Fig. 4.1.18 Alternative form for steady-state equivalent circuit for balanced two-phase
induction machine with balanced excitation. Here the resistance (1 - s)Rr/s gives rise to
a power dissipation equal to the power converted to mechanical form.

By some simple manipulations it can be verified that the magnitude of i,
is the same as the magnitude of iar found in (4.1.63). The effect of the relative
motion has been to change the frequency but not the magnitude of the
rotor current as viewed from the stator winding and indicated in (4.1.64)
and (4.1.66). Consequently, when the equivalent circuit of Fig. 4.1.17 is
redrawn as in Fig. 4.1.18, the power loss calculated in R, is the actual I2R
loss in one winding of the rotor. The power into the other resistance (1 -
s)R./s represents power converted to mechanical form, as will be demonstrated.

The equivalent circuit of Fig. 4.1.17 or 4.1.18 can be used to study the
steady-state electrical behavior of induction machines. Our use of i.s as
having zero phase angle can be relaxed and I, can be replaced by a complex
amplitude. The equivalent circuit serves the important function of helping
to determine the correct relative phase angles.

The b winding on the stator will behave like the a winding except for a 900
phase shift in all variables, as indicated by the excitations (4.1.55) and (4.1.56).
This can be verified quite easily and is not done here.

To describe the behavior of the induction machine, as viewed from the
mechanical terminal pair, we use (4.1.23) with (4.1.55), (4.1.56), (4.1.63)
and the value of ib, obtained by replacing the cosine in (4.1.63) with a sine,
and obtain the expression for the torque

Te= (W, - (,)Mls
2

R, 2+ ((, - jm)2 72
x [{cos [(os, - wm)t + a] sin cot - sin [(o, - wo•)t + a] cos w•t}

x cos (wt + y) - (cos [(wo - w~)t + 0] cos w",t

+ sin [(o, - om)t + a] sin w,t} sin (omt + y)]. (4.1.72)

The successive use of trigonometric identities* and the definition of angle fi
in (4.1.63) lead to the simplified result

S(, - om)M 2RI, 2

TT o Rs + (w0 - y)M si (4.1.73)

* cos(x - y) = cos x cos y + sin x sin y, sin (x - y) = sin x cos y - cos x sin y.
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The instantaneous torque T e is constant. This is to be expected because
balanced two-phase currents yield constant-amplitude rotating fields, as
discussed in Section 4.1.4, and the interaction of these fields when the con-
dition of (4.1.30) is satisfied produces a steady torque.

The mechanical power output of the machine is

Pm= owmTe = (R/s)2 +i2L 2-] ( - s)(4.1.74)

where we have used the definition of slip s in (4.1.67) and manipulated the
result to get this form. Note that the term in brackets is the square of the
magnitude of Al, as given in (4.1.71); thus we have verified that the power
absorbed by the resistance (1 - s)R,l/s in Fig. 4.1.18 is indeed the power
converted to mechanical form when multiplied by two to account for both
phases.

The total power input to the stator windings (excluding stator PR losses,
which we have done) is defined as the air-gappowerp,. It is clear from Fig.
4.1.17 that

g = I~ -, (4.1.75)
S

where Ir is the magnitude of fr given by (4.1.71) and (4.1.75) is twice the
power input to one phase. As already indicated, the rotor 12R losses p, are
given by

Pr = I,2R, = sp,. (4.1.76)

The power Pm converted to mechanical form is

pm = • )R, = (1 - s)pq. (4.1.77)

Thus the power into the stator equals the sum of rotor losses and converted
power

pg= p, + p.m (4.1.78)

and there is no rate of change of total energy stored in the machine. We
knew this all the time, because for balanced excitation the air-gap magnetic
fields have constant amplitudes.

We now use (4.1.75) to (4.1.78) to identify the three possible modes of
operation of an induction machine as illustrated in Fig. 4.1.19. The arrow
heads indicate the flow direction ofpower and the ranges of slip and speed are
given in the figure. Note in particular that the rotor power p, is always greater
than zero as it must be because it is an IPR loss. Note also that brake operation
has power coming into the machine from both electrical and mechanical
terminal pairs and all of this power is dissipated in the rotor resistance.
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Pr> 0

> 0 Electromechanical >0 0<s<l1
coupling < m<w
system

(a)

s<O
WM> WS

p,> 0 s>l
Wo•m<0

(c)
Fig. 4.1.19 The three modes of operation of an induction machine: (a)motor operation;
(b) generator operation; (c) brake operation.

When operating as a motor, the machine efficiency tj is defined as the
mechanical power output divided by the electrical power input to the stator;
thus

Pm7- 1 - s. (4.1.79)
P9

As a consequence, large induction machines intended for the efficient
production of mechanical power are designed to run at as small a slip (as
close to synchronous speed) as possible.

Induction machines are normally excited by almost constant voltage
sources. Consequently, the electromechanical coupling properties are of
most interest for this condition and we need to express (4.1.73) in terms of the
magnitude V, of the terminal voltage P,. We use (4.1.70) to write

o,"M2I1,(R,/s) 3M2OL (4.1.80)
#, = jOLI, + 7

2 
2 (4.1.80)

(R7 /s) 2 + o~Lr (Rr/s) + w8
8L2 '

In obtaining this form we have used the definitions of angle fl from (4.1.63)
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and slip s from (4.1.67). The magnitude squared of P, is then

VF w{_M2L 12 Fw.
2M 2(Rr/s) 2

V, = w -L 2 2 + L(RI 22 -. 2 i. (4.1.81)
(Rr/s)2 + (!)s2L, 2 (R,/s)2 + w(2Lr2

Solution of this equation for I,2 , substitution of that result in (4.1.73) and
simplification lead to the result

Te (k 2'w,)(L,/L,)(R,/s) VY2

[wo,(l - k2)L,2 + (Rr/s)2 (4.1.82)

We have used the square of the maximum coefficient of coupling

M2

k2 - 2- (4.1.83)
L,L,

to simplify this expression. Note that this is the coefficient of coupling between
the a windings on stator and rotor when rotor position 0 is zero.

A curve of electromagnetic torque versus slip (and mechanical speed)
typical of large squirrel-cage induction machines is shown in Fig. 4.1.20.
The ranges over which the machine operates as a motor, generator, and
brake are also indicated.

The torque given by (4.1.82) depends on rotor resistance R, and slip s
only through the ratio R,ls. By differentiating (4.1.82) with respect to this
ratio, setting the derivative equal to zero, and solving for the ratio we can
determine that the torque has two maxima that occur when

- = ± o)(1 - k2)L,, (4.1.84)

Torque

Fig. 4.1.20 Torque-slip curve of a two-phase induction machine with balanced excitation.

4.1.6
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from which the slip at which maximum torque occurs is

s = smT = -- Rr (4.1.85)
Ws(1 - k2)L,

These two values of slip are indicated in Fig. 4.1.20. Substitution of (4.1.84)
into (4.1.82) yields for the maximum torque

k2 V2
Te = +Tem = -1- .2v2 (4.1.86)

2w,2L,(1 - k2)

This maximum torque is indicated in Fig. 4.1.20.
The maximum torque given by (4.1.86) is independent of rotor resistance

R,. Thus for a wound rotor induction motor with which the rotor resistance
can be set to any desired value we can get a set of steady-state torque-speed
curves as sketched in Fig. 4.1.21. Note that as R, increases the speed at which
maximum torque occurs decreases but the maximum torque stays the same.
This fact is often used by introducing external resistance into the rotor
circuit to achieve a high starting torque and then short-circuiting the rotor
windings for normal running to get a small slip and therefore high efficiency.

The loading of an induction motor normally occurs in the region of nega-
tive slope near synchronous speed; for example, the torque-speed curve of an
induction motor and a typical load (e.g., a fan) are shown in Fig. 4.1.22. The
steady-state operating point of the system is indicated on the curves. If the
fan load increases to the dashed curve, the new operating point occurs at a
higher torque, lower speed, and higher slip. At the higher slip the motor
produces more mechanical power but with less efficiency.

It is worthwhile to understand the reasons for the shape of the torque speed
curve of an induction motor. First, in the normal operating range, which is
the region of negative slope near synchronous speed in Fig. 4.1.20, the slip is

Fig. 4.1.21 Variation of torque-speed curves of induction motor with rotor resistance.
Stator voltage held constant.
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Fig. 4.1.22 Loading of an induction motor.

very small, hence the induced currents in the rotor are at very low frequency
[see (4.1.63)]. Under this condition the resistance of the rotor windings has
a much greater effect than the inductance. To express this mathematically,
the resistive term in the denominator of (4.1.82) dominates such that

( > [oi(1- k2)L] 2

and the torque becomes
k2 L, sT½ ---- V8•  (4.1.87)
w, L, Rr

This torque is a linear function of slip and therefore also of mechanical speed.
When the mechanical speed is far from synchronous speed (the slip is

large), the frequency of the rotor currents (4.1.63) is high and inductance
predominates over resistance. This region is defined from the denominator of
(4.1.82) as the condition

[cow(l - k 2)L,]2> (R

In this case the torque becomes

Tk2  R, V. (4.1.88)
co0,(1 - k2)2LL,L s

This expression varies inversely with slip.
The two asymptotes are sketched in Fig. 4.1.23 for positive slip. These

two simplified models are useful for studying the behavior of the machine
under particular conditions; for example, for the kind of torque-speed curve
shown in Fig. 4.1.23, which is typical of large induction motors, the induct-
ance-dominated model (4.1.88) is sufficient for starting conditions and the
resistance-dominated model is adequate for normal running conditions. We
have more to say about these kinds of approximations in the next chapter.

~111111111~-~-
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Resistance dominated \
operation Tes

Inductance dominated /
operation Te- 1/s

Actual torque

0 0.5 w, s, Speed Wm

1 0.5 0 Slip s

Fig. 4.1.23 Asymptotic behavior of an induction motor.

Our analysis of induction machines has been done with a two-phase model.
Most large induction machines are actually excited by three-phase sources.
Nonetheless, the standard technique for analysis is to transform a three-
phase machine to an equivalent two-phase machine for a study of the energy
conversion properties. This is true for any number of phases.* Consequently,
our treatment is general and our conclusions are valid for all balanced
polyphase machines with balanced polyphase excitation.

We have only highlighted the properties of polyphase induction machines
with the idea of trying to establish some insight into the physical processes
occurring. The subject of induction machines is complex and extensive
enough to be the sole subject of books.t

All of our discussion so far has been relevant to polyphase induction
machines. There are also single-phase induction machines which have some
unique characteristics. A single-phase induction machine is constructed like
the machine illustrated in Fig. 4.1.1. The stator is excited by a single-phase
source and the rotor winding is short-circuited. (Actually, the rotor is
almost always of squirrel-cage construction and therefore the equivalent of
two windings, 90' apart in space.)

As we discovered in Section 4.1.4, single-phase excitation of a symmetri-
cally distributed winding produces two equal-amplitude waves of flux density
traveling in opposite directions in the air gap. A squirrel-cage rotor in this

* See, for example, White and Woodson, op. cit., Chapter 8.

t See, for example, P. L. Alger, The Nature of Polyphase Induction Machines, Wiley, New
York, 1951.
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environment does not know which way to go and therefore will not start
to rotate. Once started, however, the rotor will continue to run in the same
direction. The torque-speed curve of a single-phase induction motor can be
derived as the superposition of two machines operating with the traveling
components of the air-gap flux, as illustrated in Fig. 4.1.24. Thus, with
rotation in either direction, the flux wave traveling in that direction dominates
and the machine continues to run in that direction. In the normal running
range near synchronous speed the single-phase induction motor has properties
similar to those of polyphase machines.

In view of the single-phase machine properties illustrated in Fig. 4.1.24,
there is a problem in starting the machine. There is a variety of starting
methods.* For moderate-size machines (f- to 5 hp, approximately) of the
type installed in refrigerators, air conditioners, washing machines, and the
like, an auxiliary winding is used. The auxiliary winding is wound with its
magnetic axis displaced 90 degrees from that of the main winding. It is also
excited from the single-phase source, but the phase angle of its current is
different from that of the main winding, either because of a different LIR
ratio or because a capacitor is added in series. This different phase angle of
the current in the auxiliary winding causes an unbalance between the two
rotating field waves; one of the waves dominates and starts the rotor turn-
ing. In most cases the auxiliary winding is disconnected by a centrifugal
switch when the rotor reaches a predetermined speed during the acceleration.

For smaller, single-phase induction machines starting torque is provided
by shading coils,f which are short-circuited turns on the stator that give the
effect of making one flux wave dominate the other.

Fig. 4.1.24 The torque-speed curve of a single-phase induction motor.

* See, for example, Fitzgerald and Kingsley, op. cit., Chapter 11.
t See, for example, Fitzgerald and Kingsley, loc. cit.

4.1.6
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Because of the simple, rugged construction possible with a squirrel-cage
rotor, the induction motor is the least expensive and most reliable means of
converting electric energy to mechanical energy. As a result, induction motors
are more numerous by far than any other type of motor.

Another important class of induction motor is the two-phase servomotor,
which is essentially a two-phase induction motor with rotor resistance
sufficiently high that maximum torque occurs at a slip of around 1.5 (see
Fig. 4.1.21). The torque-speed curve then has a negative slope for all positive
speeds and can therefore run stably at any speed between zero and syn-
chronous speed. Such a motor is normally operated with full voltage applied
to one winding and with variable voltage applied to the other to get smooth
control of speed. Such operation is quite inefficient and thus servomotors are
made in small sizes, mostly up to 20 W but sometimes up to 1000 W with
auxiliary cooling for the rotors. They are, as their name implies, used mostly
in servo systems for control applications. The analysis of servomotors is a
straightforward application of the techniques we have introduced and is
done quite well elsewhere.* Thus we do not discuss them further here.

4.1.6c Commutator Machines

The most widely used machine for control purposes is the dc machine
which uses (or supplies) electrical power at zero frequency. It is evident from
(4.1.18) that with zero-frequency rotor and stator currents it is impossible to
satisfy the frequency condition with any nonzero mechanical speed. This
problem is circumvented by the use of a commutatorwhich can be viewed as a
mechanical frequency changer. The stator circuit (field circuit) of the usual
de machine is excited by direct current and the rotor (armature) circuits are
fed from direct-current sources through a commutator that provides the
currents in the rotor conductors with components at ow. This frequency,
with the zero stator-current frequency, satisfies the condition in (4.1.18)
at all mechanical speeds.

A commutator is a mechanical switch whose state is determined by the
rotor position 0. The simplest possible commutator is shown schematically
for one rotor coil without the iron in Fig. 4.1.25a. When a constant current I
is passed through the external terminals and the rotor carrying the coil and
commutator is rotated about its axis with a mechanical velocity wo,, the
waveform of the current in the coil is as shown in Fig. 4.1.25b. It is clear from
this waveform that the fundamental frequency of the coil current is w,, as
stated above.

In practical machines commutators are made with many segments, and the
many coils on the rotor are connected to one another and to the commutator

* See, for example, G. J. Thaler and M. L. Wilcox, Electric Machines, Wiley, New York,
1966, pp. 208-213.
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Fig. 4.1.25 Schematic representation of a simple commutator: (a) the physical arrange-
ment; (b) coil current.

in one of two ways to obtain maximum utilization of the copper coils.*
A dc machine rotor is shown in Fig. 4.1.26, and Fig. 4.1.27 illustrates how
brushes are mounted to make contact with the commutator in a dc machine.

In spite of the apparent complications, the commutator can still be viewed
as a mechanical frequency changer that is necessary to satisfy the frequency
condition for average power conversion (4.1.18) when the electrical sources
(or sinks) are at zero frequency (dc).

A variety of de machine characteristics is possible, depending on whether
the field (stator) circuit and the armature (rotor) circuit are connected in
series, in parallel, or are excited separately (see Section 6.4.1).

The commutator has been described as having dc excitation, but it also
acts as a frequency changer when alternating currents are fed into the
brushes, the change in frequency being equal to the rotational speed of the
commutator. Thus, if currents at frequency co are fed into the stator circuits
and into the rotor coils through a commutator, the rotor currents will contain
components at frequency co - co,, and the frequency condition of (4.1.18)
is automatically satisfied at all mechanical speeds. This result gives rise to

* For details see Knowlton, op. cit., Section 8.

4.1.6
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Fig. 4.1.26 A dc machine rotor (armature). Note the large number of slots and commuta-
tor bars. (Courtesy of Westinghouse Electric Corporation.)

many varieties of ac commutator machines*; the most common of which are
used to drive vacuum cleaners, hand drills, electric egg beaters, and so forth.

Although we could develop the equations of motion and study the steady-
state properties of commutator machines as we have done for synchronous
and induction machines, it is more appropriate and meaningful to do so
after we have developed some field theory for moving media. Thus we defer
this treatment until we reach Chapter 6, Section 6.4.

4.1.7 Polyphase Machines

In our discussions so far machines have been considered with single-phase
windings (Fig. 4.1.1) and two-phase windings (Fig. 4.1.7). In this section the
definitions and configurations are given for machines with any number of
phases, hence the name polyphase.

Polyphase electric power is generated and used for several reasons. It is
economically optimum to generate and distribute three-phase power; the use

* For more detail see Knowlton, op. cit., Section 7.
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of polyphase power allows the operation of rotating machines to produce
steady torque, even though the excitation is ac (see Section 4.1.3), and a
polyphase machine for a particular application is smaller (and therefore less
expensive) than a single-phase machine.

A set of balanced polyphase currents (or voltages) consists of a number of
currents (or voltages) equal to the number of phases, each member of the
set having the same amplitude and all members of the set being equally
spaced in time phase; for example, a balanced set of three-phase currents
(labeled by subscripts as phases a, b, and c) is specified as

ia = I cos wt,

i =ICos ( t 3),
(4.1.89)

i = I cos (ot - 3

where I is the amplitude and 21r/3 is the phase difference between any two
phases.

Fig. 4.1.27 A dc machine. Note how the brush rigging is assembled to hold the brushes
in contact with the commutator. Note also the salient poles on the stator. (Courtesy of
Westinghouse Electric Corporation.)
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It is easy to extend this system to an arbitrary number of phases. Suppose
there are n phases. Then a balanced set of voltages is written as

vi = Vcos cot

V = Vcos (cut - 29

= Vcos (4.1.90)

v.= Vcos [cot (n -1) 2w

In these expressions V is the amplitude and the phase difference between any
two adjacent phases is (27r/n) rad.

In terms of this general scheme, a two-phase system like that in (4.1.24)
and (4.1.25) is the special case of half a four-phase system. A four-phase set of
currents is written as

i = Icos cot,

ib=Icos Cot - -2,

iO = I cos (ct - 7r), (4.1.91)

id= I cos (cot --

A selection of the first two or the last two of this set will yield a set of two-
phase currents with the same relative phase (4r/2 rad) as that in (4.1.24)
and (4.1.25).

Any set of phases will have a phase sequence defined as the order in which
the phase variables reach a positive maximum (or any other convenient
reference value). Thus the sequence of the three-phase system of (4.1.89)
is a to b to c which is usually defined as positive sequence. A three-phase
set with negative sequence (c to b to a) is

i, = I cos cot,

i I = cos (ot + ) '  (4.1.92)

i6 =Icos (ct +4 .

I__·____ 
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Stator a-winding
magnetic axis

Fig. 4.1.28 A three-phase stator.

Note that the n-phase set of voltages of (4.1.90) and the four-phase set of
currents in (4.1.91) are both positive sequence.

Now suppose that a rotating machine is to have its stator wound so that
with balanced polyphase currents in its windings the rotating field due to
stator currents will have constant amplitude and will rotate at constant speed
around the periphery of the air gap. Such a system has already been discussed
for a two-phase machine in Section 4.1.4. From that discussion it is clear
that the number of windings must equal the number of phases and that the
winding magnetic axes must be placed around the periphery in the same
relative space positions that the currents are placed in relative time phase.

To illustrate this consider the three-phase windings on the stator of Fig.
4.1.28 in which the rotor is omitted for simplicity and the windings are shown
lumped in single slots, although they would be distributed in an actual
machine. When the positive-sequence, three-phase currents of (4.1.89) are
applied to this machine, a field analysis similar to that of Section 4.1.4 will
show that the air-gap flux density distribution will have constant amplitude
and will rotate in the positive V-direction with the angular speed w. Excitation
of the stator of Fig. 4.1.28 with the negative sequence currents of (4.1.92)
yields a constant-amplitude field pattern rotating in the negative p-direction
with the angular speed co.

" -- ~
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This discussion, in which the example of a stator was used, applies equally
well to a rotor. The general case is presented elsewhere.*

A machine can operate successfully with any number of phases on the
stator and the same or any other number of phases on the rotor; for instance,
a three-phase alternator (a synchronous machine used to generate electric
power) usually has a three-phase stator (armature) winding and a single
rotor (field) winding.

4.1.8 Number of Poles in a Machine

The number of poles in a machine is defined by the configuration of the
magnetic field pattern that occurs; for example, consider the rotor of Fig.
4.1.29a with a single winding. When the instantaneous current is in the
direction indicated by the dots and crosses, the resulting B field is as sketched
in the figure. With the B field as shown, the rotor can be viewed as an electro-
magnet with north (N) and south (S) poles as indicated. In a trip around its
periphery two poles are passed; therefore it is a two-pole rotor.

Consider now the rotor of Fig. 4.1.29b which has four slots carrying coils
connected in series with the polarities indicated by dots and crosses. Once
again this winding can be single-phase or it can be one phase of a polyphase
winding. When the instantaneous winding current has the direction indicated,
the resulting B field is as sketched in Fig. 4.1.29b and the rotor is effectively
a four-pole electromagnet.

These ideas can be generalized to an arbitrary number of poles by stating

Fig. 4.1.29 Definition of number of poles in a machine: (a) two-pole rotor; (b) four-pole
rotor.

* White and Woodson, op. cit., Chapter 10.
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Fig. 4.1.30 Four-pole, single-phase machine.

that with current in one phase the number of poles (north and south) en-
countered in one turn around the periphery of the air gap defines the number
of poles. It is clear that poles occur in pairs.

This discussion of the number of poles on a rotor applies equally well to
stators.

Re-examination of the examples of earlier sections shows that they all
concern two-pole machines. Some of those ideas are considered here for
machines with more than two poles.

Consider the four-pole, single-phase machine illustrated in Fig. 4.1.30.
The interconnections are not shown but current i, is in all the stator coils in
the directions shown and current i, is in all the rotor coils in the directions
shown. The slots are assumed to have negligible effects on the self-induct-
ances (this is a smooth-air-gap machine) so that the self-inductances will be
independent of rotor position 0. Because of the symmetries involved (see
discussion in Section 4.1.1), the mutual inductance can be expressed as

L,,(O) = M1 cos 20 + M, cos 60 + Ms cos 100 + . -. . (4.1.93)

_______111__14_______
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Stator
m•anftir

Fig. 4.1.31 Machine with four-pole stator and two-pole rotor. This configuration can
produce no torque.

Compare this expression with (4.1.4). It can be generalized immediately by
recognizing that for a p-pole-pair machine the mutual inductance between a
stator winding and a rotor winding is expressible as

L,,(O) = M 1 cospO + M3 cos 3pO + Ms cos 5p0 + • • • . (4.1.94)

To minimize the generation of harmonics multipole ac machines are designed
to accentuate the lowest space harmonic of Ls,, and to decrease as much as
possible the higher space harmonics.

In the two examples in (4.1.93) and (4.1.94) it has been assumed that the
rotor and stator have the same number of poles. This is necessary for success-
ful operation of the machine as a power converter. If the rotor and stator had
different numbers of poles, the mutual inductance between rotor and stator
would be zero and, as evidenced by the terminal relations (4.1.1) to (4.1.3),
the electromechanical coupling would disappear. To verify qualitatively that
this is so, consider the machine in Fig. 4.1.31 which has a two-pole rotor and
a four-pole stator. We can see that if the system has the usual type of sym-
metry and the stator is excited by direct current the result is that no net flux
links the rotor circuit due to stator excitation for any rotor angle 0 and the
mutual inductance is indeed zero.

~~
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By carrying out a process similar to that used in Section 4.1.2, we find
that the condition that must be satisfied by the frequencies and mechanical
speed (4.1.18) for average power conversion must be generalized for a p-
pole-pair machine to

c -1 (-e- , ± W,). (4.1.95)
P

Thus for given electrical frequencies the mechanical speed is reduced as the
number of poles is increased; for example, for a synchronous machine
operating on 60-Hz power,

w,= 27r60 and ow, = 0,
the mechanical speed is

2rr60
oi =- ;

forp = 1 wo, = 1207n rad/sec = 3600 rpm,
forp = 2 o,~ = 60r rad/sec = 1800rpm,
forp = 15 w,o = 8r rad/sec = 240 rpm.

For a synchronous machine the maximum obtainable shaft speed is produced
by a two-pole machine. The speed can be set at any submultiple of this
maximum speed by setting the number of poles.

The freedom to set the number of poles allows for optimum design of
systems; for instance, in the generation of electric power at 60 Hz generators
for operation with steam turbines have two poles (a few have four) because
steam turbines operate best at high speeds. On the other hand, generators
for operation with hydraulic turbines (water wheels) usually have many
poles, often as many as 40 or more, because hydraulic turbines operate best
at low speeds.

Examination of Fig. 4.1.30 shows that the wire in the slots of the four-pole
configuration could be reconnected at the end turns to yield a two-pole
configuration. Thus a machine can be made to operate at two speeds by
changing the number of poles. This is done frequently on induction machines
for with a squirrel-cage rotor no rotor reconnections need to be made; for
example, induction motors that drive automatic washing machines often
operate with four-poles for the washing cycle and are reconnected as two-pole
machines to run at approximately twice the speed for the spin-drying cycle.

It is clear from the foregoing analyses and discussions that a rotating
machine is conceptually a simple device. It is simply a magnetic field-type,
lumped-parameter, electromechanical device whose principal properties can
be deduced by the straightforward techniques of Chapters 2 and 3. The many
constructional variations (multipole and polyphase) and the wide variety of

4.1.8
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possible excitations and characteristics lead to long and cumbersome, though
necessary, mathematical analysis.* The amount of mathematics required
should never be mistaken for conceptual complexity. Moreover, advantage
should always be taken of the orderly mathematical procedures made
possible by the symmetries that exist in machines.t

4.2 SALIENT-POLE MACHINES

The second geometrical configuration ofrotating machines to be considered
is that of the two-pole, single-phase, salient-pole machine illustrated in Fig.
4.2.1. This machine gets its name from the fact that one member (the rotor
in Fig. 4.2.1) has protruding or salient poles and thus the air gap is not
uniform around the periphery. The stator coil in Fig. 4.2.1 is shown lumped

Stator
magnetic

axis

totor
agnetic
axis

Fig. 4.2.1 Two-pole, single-phase, salient-pole machine with saliency on the rotor.

* See, for example, White and Woodson, op. cit., Chapters 3, 4, and 7 to 11.
t White and Woodson, op. cit., Chapter 4.
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Fig. 4.2.2 Rotor of a salient-pole, synchronous motor. Note the method in which the
coils are wound around the salient poles. (Courtesy of Westinghouse Electric Corporation.)

in two slots for simplicity. In practical machines the stator winding is distrib-
uted among several slots. The rotor winding in Fig. 4.2.1 is a fair representa-
tion of the method of winding salient rotors in practice, as indicated by the
constructional details of the rotor for a salient-pole synchronous motor in
Fig. 4.2.2. Another example of a salient-pole synchronous machine is shown
in Fig. 4.2.3. This is a multipole generator driven by a hydraulic turbine. An
example of a machine with saliency on the stator is the dc device in Fig.
4.1.27.

4.2.1 Differential Equations

Considering the system in Fig. 4.2.1 as an electrically linear, lumped-
parameter, magnetic field-type, electromechanical device along the lines of
Chapter 3, it is evident that the system is completely described when the
inductances (electrical terminal relations) are known. Moreover, power
conversion will occur only through inductances that depend on angular
position 0; thus to assess the effects of saliency on power conversion
properties it is necessary only to investigate the inductances.
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Fig. 4.2.3 Cutaway view of a hydroelectric generator. This is an example of a salient-pole,
synchronous machine. (Courtesy of General Electric Company.)

First, when it is assumed that the slots that carry the stator winding in
Fig. 4.2.1 cause negligible effects on the air-gap magnetic field, it is apparent
that the self-inductance L, of the rotor winding is independent of angle 0.
It is also evident that the mutual inductance and the self-inductance of the
stator winding depend on 0. Thus the electrical terminal relations can be
written as

A, = L,(O)i,+ L 7,(O)i,, (4.2.1)

, = L,,(O)i, + L,i,. (4.2.2)

Comparison of these expressions with the comparable ones for the smooth-
air-gap machine (4.1.1) and (4.1.2) shows that the major difference introduced
by saliency is the dependence of the stator self-inductance L, on angular
position 0, although an additional effect can occur in the form of the mutual
inductance L,(O). *

Consider first the stator self-inductance L,. From the symmetry of the
rotor structure in Fig. 4.2.1 it should be evident that the lowest space har-
monic is the second because turning the rotor 7r rad in 0 brings the inductance
to its original value. This inductance is a maximum at 0 = 0 because the

* In polyphase machines saliency also affects the mutual inductances between windings
on the nonsalient member. For an example of this and resulting forms see Section 4.2.2.
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magnetic field encounters the smallest reluctance and a minimum at 0 = T/2
because the magnetic field encounters the maximum reluctance. Thus the
stator self-inductance is expressible in general as

L,(0) = Lo + L2 cos 20 + L4 cos 40 + * - . (4.2.3)

In the design of ac salient-pole machines the salient-pole structure is shaped to
accentuate the cos 20 term and to minimize all other space harmonics.
Consequently, for the remainder of this treatment it is assumed that

L,(0) = LO + L, cos 20. (4.2.4)

This equation for inductance is often interpreted as representing the super-
position of a smooth air gap (Lo) and a periodically varying air gap due to
saliency (L4 cos 20).

To ascertain the form of the mutual inductance L,(0) we refer to Fig. 4.2.1
and reason physically. We recognize that reciprocity holds (Section 3.1.2c
of Chapter 3) and consider flux linkages with stator windings due to rotor
winding excitation by current of the direction indicated in Fig. 4.2.1. At the
same time, we remember that the stator winding is actually distributed in
many slots around the periphery to form a coil with the magnetic axis shown.
Rotor position 0 = 0 results in maximum positive flux linking the stator
winding, whereas rotor position 0 = ir yields maximum negative flux linkage.
The symmetry indicates that these two maxima are of equal magnitude.
As the rotor position 0 is varied from 0 to r through positive angles, the flux
linkage with the stator varies smoothly from the positive maximum to the
negative maximum. Variation of rotor angle from 0 to 7r through negative
angles gives exactly the same variation of flux linkages. Consequently, the
mutual inductance is expressible as a Fourier series of odd space harmonics,
exactly as it was in the smooth-air-gap machine in (4.1.4),

L,(0) = M1 cos 0 + M, cos 30 + M5 cos 50 + - . (4.2.5)

Although the forms of mutual inductance for the two machine types are the
same, it should be clear that for a given frame size the coefficients in (4.1.4)
will have different numerical values for the two cases.

For salient-pole ac machines the winding distribution on the member
without salient poles (the stator in Fig. 4.2.1) is designed to maximize MI
and minimize all other terms in (4.2.5), just as is done for smooth-air-gap
machines. For the remainder of this treatment it is assumed that this design
objective has been met and the mutual inductance is expressed as

L,(O) = M cos 0. (4.2.6)

Substitution of (4.2.4) and (4.2.6) into (4.2.1) and (4.2.2) and calculation

_~I 
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of the mechanical torque of electric origin, using the techniques of Chapter 3
[see (g) of Table 3.1], yield

is = (L 0 + L 2 cos 20)i, + Mir cos 0, (4.2.7)

¾ = Mi, cos 0 + Lri,, (4.2.8)

T e = -isiM sin 0 - i,2L, sin 20. (4.2.9)

These terminal relations for the electromechanical coupling system can be
used with whatever external electrical and mechanical sources or loads are
connected to the machine terminals to write the differential equations for
the machine system. For example, if we specify the terminal constraints as
those given in Fig. 4.1.5, which include the parameters normally associated
with that machine alone, the differential equations derive from Kirchhoff's
voltage law and Newton's second law:

v, = R,i, + ", (4.2.10)
dt

vU = Rri' + .r, (4.2.11)
dt

d2 O dO dO/dt
T + Tm = Jr + Br- + Tor , (4.2.12)

dt 2  dt IdO/dt|

where (4.2.7) to (4.2.9) are used to express 4s, 2~, and Te. These equations
have exactly the same form as (4.1.9) to (4.1.11) for the smooth-air-gap
machine, as is to be expected. However, the terminal relations are different
for the two machines. Compare (4.2.7) to (4.2.9) for the salient-pole machine
with (4.1.6) to (4.1.8) for the smooth-air-gap machine. The sources in (4.2.10)
to (4.2.12), v,, v,, and Tm, are completely general and can be independent or
dependent on some variable.

4.2.2 Conditions for Conversion of Average Power

To establish conditions for average power conversion in a salient-pole
machine we assume excitation of the electromechanical coupling system by
ideal current and position sources as illustrated in Fig. 4.1.6. The sources are

i,(t) = I, sin cst, (4.2.13)

i,(t) = I, sin cort, (4.2.14)

O(t) = o(mt + 7, (4.2.15)

where I,, IIr, w,, wo, ,, and y are positive constants. Note that these con-
straints are the same as those we used with the smooth-air-gap machine
(4.1.12) to (4.1.14).

_~
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The first term in the torque expressed by (4.2.9) has the same form as
(4.1.8) for the smooth-air-gap machine. Consequently, all the discussions of
average power conversion in Section 4.1.2 apply equally well to the first term
of (4.2.9). In order for the mutual inductance term of the torque in a salient-
pole machine to participate in average power conversion, one of the four
conditions of (4.1.18), which relates electrical excitation frequencies and
mechanical velocity, must be satisfied. This condition is

Wm, = ± os ± W0. (4.2.16)

The unique effect of salient poles on the power conversion process is
represented by the second term in (4.2.9). With the terminal constraints of
(4.2.13) to (4.2.15), the instantaneous mechanical power output of the cou-
pling system due to the second term in (4.2.9) is

Pm = -oWI, 2 L2 sin 2 
sot sin (2w~t + 2 y). (4.2.17)

The use of trigonometric identities allows us to write this expression in the
form

(O 2L2
pm m- {2 sin (2oJmt + 2y) - sin [2(wm + wo))t + 2 y]

4
- sin [2(•m - os)t + 2y]}. (4.2.18)

A sinusoidal function of time has an average value only when the coefficient
of t in its argument goes to zero. The first term in braces in (4.2.18) has an
average value when o, = 0, which is uninteresting because for this condition
the power conversion is zero. The second term has an average value when

m,ý+ a), = 0 (4.2.19)

and the third term has an average value when

C(o,- 0•, = 0. (4.2.20)

These two conditions are expressed in the compact form

C0or= ±Os, (4.2.21)

and when either condition is satisfied the average power converted is

pm<av) = sin 2y. (4.2.22)
4

Sufficient conditions for nonzero average power conversion are (4.2.21)
and sin 2y $ 0.

It is worthwhile to interpret this result in terms of rotating fields along the
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lines of Section 4.1.4. Recall that single-phase excitation of the stator winding
with a current of frequency w, yields two component field patterns rotating
in opposite directions with the angular speed o,. Thus each of the two con-
ditions of (4.2.21) is interpreted as the condition under which the salient-pole
structure is fixed in space with respect to one component of a stator rotating
field. As a result, it is reasonable to expect that the use of balanced polyphase
windings and balanced polyphase excitation, which produce a constant-
amplitude rotating field (see Section 4.1.4), with saliency can produce a
constant power conversion with no pulsating terms. Such is the case; in fact,
saliency is used in machines (synchronous and direct current) in which such a
result occurs. An example that illustrates how saliency affects the steady-
state behavior of polyphase synchronous machines is given in Section 4.2.4.

4.2.3 Discussion of Saliency in Different Machine Types

The conditions expressed by (4.2.16) and (4.2.21) are now used to assess
the usefulness of saliency in the principal machine types. We must recognize
that within the framework of our general treatment there are possibilities
for numerous unique machine types and many nonstandard machines are
built for special applications. Most of these machines can be analyzed by
using the general techniques developed here.

The simplest machine in which saliency is exploited is the reluctancemotor.
In the nomenclature of Fig. 4.2.1 a reluctance motor has a salient-pole
rotor, one or two stator windings, but no rotor winding. The stator windings
are excited by single-frequency alternating current. The only torque produced
by this machine is that due to saliency or the reluctance torque given by the
second term of (4.2.9) at a mechanical speed defined by (4.2.21). Thus the
reluctance motor is a synchronous motor because it converts power at only
one speed, o,. The steady-state energy conversion properties of a single-
phase reluctance motor were studied in Example 3.1.2. Because of poor
efficiency and power factor, reluctance motors are made in small sizes for
such applications as clocks and phonograph turntables. Like any other
synchronous machine, a reluctance motor has no starting torque and is
usually started as an induction motor.

Saliency is most often exploited to improve the performance of machines
that can operate successfully without it. To determine which machines can be
helped by saliency, we must know when (4.2.16) (smooth-air-gap) and (4.2.21)
(saliency) can be satisfied simultaneously with the same excitation. In one
case we set w, = 0 and w, = o-,, which yields a synchronous machine.
We consider this subject in some detail in Section 4.2.4.

Saliency is also useful in dc machines in which the stator excitation is
direct current (w, = 0) and the commutator produces rotor currents of
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fundamental frequency o, = co,, (see Section 4.1.6c). In this case the saliency
is on the stator and (4.2.21) is replaced by

,. = =•W,, (4.2.23)

which is the same form that (4.2.16) assumes with o), = 0. Thus saliency on
the stator of a dc machine can enhance the power conversion capability.
This is also true for commutator machines that operate on alternating current.

Although salient poles are sometimes used in small, single-phase induction
motors to simplify the construction and make the machines less expensive,
they are never used in large induction machines. As demonstrated in Section
4.1.6b, an induction machine has alternating current on both rotor and
stator. Moreover, the machine converts power only when the rotor is not in
synchronism with the stator-produced rotating field. Consequently, (4.2.16)
and (4.2.21) cannot be satisfied simultaneously and saliency in an induction
machine will produce only an oscillating power flow with no average value.
The attendant noise and vibration make saliency undesirable in an induction
machine.

4.2.4 Polyphase, Salient-Pole, Synchronous Machines

Salient poles are used in many synchronous machines; for example, all
large synchronous motors, synchronous condensers, and hydro generators
have them. It is therefore worthwhile to examine the effects of saliency on
steady-state machine performance. The results achieved with saliency are
compared with those obtained with a smooth-air-gap machine.

For the analysis we assume the balanced, two-phase, two-pole configura-
tion shown schematically in Fig. 4.2.4. As usual we show the stator coils
concentrated in two slots per phase for simplicity, but we realize that in an
actual machine the stator windings are distributed in many slots around the
periphery while maintaining the same relative symmetries with respect to
magnetic axes.

We have already written the electrical terminal relations for a salient-pole
machine with a single winding on both the rotor and stator in Section 4.2.1
[(4.2.7) and (4.2.8)]. These equations are still valid, except that saliency adds
an angular-dependent mutual coupling term between the two stator windings.
In a smooth-air-gap two-phase machine there is no mutual inductance
between the two stator windings. [See (4.1.19) and (4.1.20).]

To obtain the form of this mutual inductance between stator windings
we reason physically by using the configuration in Fig. 4.2.4. When the
rotor magnetic axis is aligned with the magnetic axis of either stator coil
(0 = 0, 7r/2, w, 37r/2), the flux produced by either coil is symmetrical with
respect to its magnetic axis and there is no net flux linking one stator coil

_~ ·111~·11~--·--Ll---------· 
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Stator a-winding
magnetic axis

ding
axis

Stator b-
winding
magnetic

axis

Fig. 4.2.4 Schematic representation of a salient-pole two-pole,
synchronous machine.

balanced two-phase

due to current in the other. Thus the stator mutual inductance L,s is

7T
L,,=O for O=n-,

2
n= 0, ±1, ±2, ±3,..... (4.2.24)

Now assume a current in stator coil a of the polarity shown. When 0 is in the
range (0 < 0 < rr/2), the salient poles distort the flux pattern due to ia,
and tend to concentrate it at the pole where the air gap is smallest. Thus for
(0 < 0 < 7r/2) the flux linkage with winding b on the stator is positive.
A similar argument shows that for the range (--r/2 < 0 < 0) the flux
linkage with winding b is negative. Using these facts, recognizing the machine
symmetries, and realizing that reciprocity applies, we write the stator-to-
stator mutual inductance as the Fourier series

L,,(0) = Ms2 sin 20 + Ms, sin 60 + M,,, sin 100 + • • •. (4.2.25)
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This expression is justified by making use of Fig. 4.2.4 to determine the
field patterns as functions of 0.

As discussed in Section 4.2.1, the winding distributions and salient-pole
shape are adjusted in ac machine design to accentuate the lowest space
harmonic and to minimize higher space harmonics in inductance. This is also
true of stator mutual inductance. To be consistent with the assumptions
made in Section 4.2.1 that this design objective has been met we simplify
(4.2.25) to the form

L,, = M, sin 20. (4.2.26)

This second harmonic variation in stator mutual inductance results from the
same distortion of flux pattern that causes the cos 20 term in stator self-
inductance indicated in (4.2.7). Furthermore, both stator windings have the
same number of turns and consequently we assume

M, = L2. (4.2.27)

This assumption is justified by a careful field analysis of the machine* and
is borne out in practice.

We now use (4.2.7) and (4.2.8) with (4.2.26) and (4.2.27) to write the
electrical terminal relations for the machine in Fig. 4.2.4:

A.. = (LO + L cos 20)ia, + L,i,, sin 20 + Mi, cos 0, (4.2.28)

A,, = Li., sin 20 + (Lo - L2 cos 2 0)i,, + Mi, sin 0, (4.2.29)

A, = Mi., cos 0 + Mi,, sin 0 + L,i,. (4.2.30)

In writing (4.2.29) we have replaced 0 with (0 - 1Tr/2) in (4.2.28) to obtain the
self-inductance and stator-to-rotor mutual inductance terms. This change
accounts for the angular difference of 7r/2 in the positions of the two stator
coils. This equation (4.2.29) could have been obtained by reasoning physi-
cally with Fig. 4.2.4 and using the assumptions we have for design objectives.

The use of (4.2.28) to (4.2.30) with the techniques of Chapter 3 [see (g)
of Table 3.1] leads to the mechanical terminal relation

T e = Mi,(i,, cos 0 - is, sin 0) - L 2 (i,. 2 
- ib,") sin 20

+ 2Li,,i,, cos 20. (4.2.31)

Equations 4.2.28 to 4.2.31 should be compared with (4.2.7) to (4.2.9) for a
single-phase, salient-pole machine to see the effects of adding the second phase
and with (4.1.35) to (4.1.38) for a smooth-air-gap, two-phase machine to see
the effects of adding saliency.

In our study of the steady-state characteristics of the salient-pole synchro-
nous machine we neglect stator winding resistances and mechanical losses

* White and Woodson, op. cit., pp. 180-190.
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and use the same excitations we had in Section 4.1.6a, namely balanced
two-phase currents on the stator,

i., = I. cos cot, (4.2.32)

ibs, = I sin wt, (4.2.33)
direct current on the rotor,

i, = I, (4.2.34)
and the position source

0 = wt + y. (4.2.35)

Like the smooth-air-gap machine in Section 4.1.6a, it can be verified by
direct substitution that there is constant flux linking the rotor winding,
hence no induced voltage. Thus we could have excited the field winding with
a constant-voltage source, as is usual in practice. It is convenient analytically,
however, to use the constant current of (4.2.34), and there is no loss of
generality in the steady-state analysis. For realistic transient analyses a
rotor winding voltage source with a series resistance must be used.

Substitution of (4.2.32) to (4.2.35) into (4.2.31) yields for the steady-state
instantaneous torque produced by the electromechanical coupling system,

To = MIr,[sin cwt cos (cot + y) - cos cot sin (wot + y)]

- LI,2[cos2 cot - sin2 wt] sin (2cot + 2y)

+ 2L2IJ2 cos cot sin ot cos (2tot + 2y). (4.2.36)

The use of appropriate trigonometric* identities allows the simplification of
this expression to the form

Te = - MIJ, sin y - L,2I, sin 2 y. (4.2.37)

This instantaneous torque is constant because the stator windings with
balanced excitation produce a constant amplitude rotating flux wave and
the salient-pole rotor is at an instantaneous position fixed with respect to this
rotating field.

Comparison of (4.2.37) with (4.1.43) shows that saliency has added a term
to the torque expression for a smooth-rotor machine.

Neglecting stator (armature) winding resistance, the terminal voltage of
stator winding a is

va, = (4.2.38)
dt

*sin x cos y - cos x sin y = sin (x - y); cos 2x = cos2x - sin 2 x; 2 cos axsin x = sin 2z.
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Substitution of (4.2.32) to (4.2.35) into (4.2.28) and that result into (4.2.38)
yields

d
va, = I, - {[L, + L 2 cos (2wt + 2y)] cos ot + L2 sin ot sin (2awt + 27))

dt

+ MI, d [cos (cot + y)]. (4.2.39)
dt

The use of trigonometric identities reduces this equation to the form

d
va, =- [LoI, cos aot + L,I, cos (Ot + 2 y) + MI, cos (wt + 7)]. (4.2.40)

dt

We define the complex quantities

va, = Re (feIt), i,, = Re (I,ejem), cos (oot + a) = Re (e•te 'ia)

and use the standard techniques of steady-state ac circuit theory to write

s, = joLoI, + jcwLI,e j2 + jwMIrejy. (4.2.41)

We define the complex voltage amplitude 4f generated by field (rotor)
current, as we did for the smooth-air-gap machine in (4.1.19), as

Ef = jMMI,e"j (4.2.42)
and rewrite (4.2.41) as

V, = jwLoI, + jwL 21,e'j2 + E4. (4.2.43)

This is the same form as (4.1.50) for the smooth-air-gap machine with the
addition of the second term due to saliency.

Because of this term, it is not possible to draw a simple equivalent circuit
for the salient-pole machine as we did in Fig. 4.1.12 for the smooth-air-gap
machine. We can, however, draw vector diagrams to show the relations among
variables as we did for the smooth-air-gap machine in Fig. 4.1.13. These
diagrams, which illustrate generator and motor operation in the salient-pole
machine, appear in Fig. 4.2.5. Note that the additional term due to saliency
does not greatly change the over-all nature of the vector diagram.

When analyzing salient-pole synchronous machines with conventional
nomenclature, the sum of the two reactance voltages (jcoLoI, + jwL 2Ie

j z2 ) is
normally decomposed into two components, one parallel to P, called the
direct-axis reactance voltage, and one perpendicular to 4, called the quad-
ratureaxis reactance voltage.*

To complete the description of the steady-state properties of salient-pole
machines we need to assume stator excitation from constant-amplitude

* See, for example, Fitzgerald and Kingsley, op. cit., Chapter 5.
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voltage sources, as is done in practice, and to express the torque Te in terms
of the terminal voltage. It can be established quite easily from the vector
diagram in Fig. 4.2.5a or 4.2.5b that

w(Lo - L,)I, sin y = V, sin 6

wo(L 0 + L,)I, cos y = VI cos 6 - Ef,

(4.2.44)

(4.2.45)
where

E= I£f1,

6 is defined in Fig. 4.2.5 and is positive in the counterclockwise direction.
The use of (4.2.44) and (4.2.45) to eliminate the angle y and (4.2.42) for E,
in (4.2.37) lead to the desired form of the torque equation

EV, L2 s2'T - Ff1 sin 6 L sin 26.
o2(Lo + L2 ) w• (L0

2 - L 2
2)

(4.2.46)

When we compare this result with (4.1.52) for the smooth-air-gap machine,
we find that the first term of (4.2.46) is the same form as (4.1.52). The second
term in (4.2.46) depends solely on the presence of saliency. When saliency is
removed, L2 = 0, the second term in (4.2.46) goes to zero, and the first term
reduces to (4.1.52) for the smooth-air-gap machine.

The two terms of (4.2.46) are plotted separately with dashed lines and the

Imaginary
Imaginary

axis

Y>0, a >0

Real
axis

'y<0, B<0
(b)

Fig. 4.2.5 Vector diagrams showing relations among variables in a salient-pole syn-
chronous machine. Diagrams drawn for L 0 = 3L2 : (a) generator operation; (b) motor
operation.

I



Torque Te

Fig. 4.2.6 Torque versus torque angle for a salient-pole synchronous machine. Curves
plotted for Lo = 5L2 and E, = V,.

total torque in a solid line in Fig. 4.2.6. These curves are plotted for

Lo = 5L,,

which is typical for water-wheel generators,* and for

E, = V,.

Note from Fig. 4.2.6 that the presence of saliency has increased both the
pull-out torque and the torque produced at small angles, which is quite
important for transient behavior.

It should be clear from what we have done so far in this section that
vector diagrams and V-curves can be drawn for salient-pole machines and
that they will be similar to those for the smooth-air-gap machine shown in

* See, for example, Fitzgerald and Kingsley, op. cit., Table 5-1, p. 237. In their nomen-
clature Xd = o(L o + L2) and X, = m(LO - L2).
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Stator

tis

Fig. 4.2.7 Four-pole, single-phase, salient-pole machine with saliency on rotor.

Fig. 4.1.15. The process is straightforward and the interpretation is the same;
consequently it is not repeated here.

All of the discussions of polyphase machines and excitations in Section
4.1.7 and of the number of poles in Section 4.1.8 apply equally well to salient
pole machines, with the understanding that there is one polar projection per
pole in a salient-pole machine; for example, Fig. 4.2.7 is a schematic drawing
of a four-pole, single-phase machine.

In our discussions of synchronous machines in this section and in Section
4.1.6a we have made the point that a synchronous machine will produce a
time-average torque and convert time-average power only at synchronous
speed. Consequently, a synchronous machine alone can produce no starting
torque. This is no problem with generators, but it is a problem with motors
and synchronous condensers. A few machines are started by auxiliary
starting motors, but the vast majority are started as induction machines.
Conducting bars are mounted axially in the pole faces and shorted together
at the ends to form a squirrel-cage winding, as shown for a motor in Fig.
4.2.2. Such a winding is conventionally called a damper winding or amortisseur
winding because, in addition to acting as an induction motor winding for
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starting, it also damps out transients in torque angle. Operation as an induc-
tion motor brings the speed to near synchronous speed. The torque oscillations
resulting from the interaction between the rotor field due to dc excitation
and the rotating stator field occur at the slip frequency, which is quite low.
This allows the oscillating torque ample time to accelerate the rotor inertia
and pull it into step at synchronous speed during one half cycle. In a turbo-
generator the solid steel rotor provides enough induction-motor action
for adequate damping and no separate damper winding is used (see Fig.
4.1.10).

4.3 DISCUSSION

At this point it is worthwhile to re-emphasize several points made in this
chapter.

First, although we have treated two geometrical configurations, the
techniques are applicable to other rotating machines by simple extensions
and modifications. Thus we should understand the basic concepts that are
quite simple physically.

Second, we have considered in some detail the steady-state characteristics
of some standard machine types for two purposes: to illustrate how the
transition is actually made from basic concepts to practical descriptions of
steady-state terminal behavior and to present the characteristics of some of
the most important rotating machines.

Next, when the reader thinks back through the material presented in this
chapter he will realize that the basic concepts of energy conversion in rotating
machines are quite simple, though the mathematics sometimes becomes
lengthy. As we indicated earlier, the symmetries that exist in rotating ma-
chines have led to orderly mathematical procedures forhandling the manipula-
tion. Thus rotating machine theory may appear formidable at first glance,
but we, you and the authors, know that this is not so.

Finally, we want to state again that among all electromechanical devices,
past, present, and forseeable future, rotating machines occur in the greatest
numbers and in the widest variety of sizes and types. Thus they form an
important part of any study of electromechanics.

PROBLEMS

4.1. The object of this problem is to analyze a physical configuration that yields the
electrical terminal relations of (4.1.6) and (4.1.7) almost exactly. The system of Fig. 4P.1
consists of two concentric cylinders of ferromagnetic material with infinite permeability
and zero conductivity. Both cylinders have length I and are separated by the air gap g. As
indicated in the figure, the rotor carries a winding of N, turns distributed sinusoidally and
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N sin 02(R +g)

into paper

-- Ni, sin (;p - 0)

Fig. 4P.1

having negligible radial thickness. The stator carries a winding of N, turns distributed
sinusoidally and having negligible radial thickness. Current through these windings leads
to sinusoidally distributed surface currents as indicated. In the analysis we neglect the
effects of end turns and assume g << R so that the radial variation of magnetic field can be
neglected.

(a) Find the radial component of air-gap flux density due to stator current alone.
(b) Find the radial component of air-gap flux density due to rotor current alone.
(c) Use the flux densities found in parts (a) and (b) to find A, and Ar in the form of

(4.1.6) and (4.1.7). In particular, evaluate L,, L,, and M in terms of given data.

4.2. Rework Problem 4.1 with the more practical uniform winding distribution representable
by surface current densities

{. Nsis(N
i (R + g)

for O< i < r,

for n < < 27r,

for O<(•y- O) <r,

for r < (o -- ) < 2r.
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In part (c) you will find the mutual inductance to be expressed as an infinite series like
(4.1.4).

43. With reference to Problems 4.1 and 4.2, show that if either the rotor winding or the
stator winding is sinusoidally distributed as in Problem 4.1, the mutual inductance contains
only a space fundamental term, regardless of the winding distribution on the other member.

4.4. The machine represented schematically in Fig. 4P.4 has uniform winding distributions.
As indicated by Problem 4.2, the electrical terminal relations are ideally

, = LiO + i -cosnO,
nodd n

A = Li r + i, M cos nO,
n odd

where L,, Lr, and Mo are constants. We now constrain the machine as follows: if= I =
constant; 0 = ct, w = constant, stator winding open-circuited i, = 0.

(a) Find the instantaneous stator voltage v,(t).
(b) Find the ratio of the amplitude of the nth harmonic stator voltage to the amplitude

of the fundamental component of stator voltage.
(c) Plot one complete cycle of v,(t) found in (a).

Fig. 4P.4

4.5. Calculate the electromagnetic torque TO of (4.1.8) by using the electrical terminal
relations (4.1.6) and (4.1.7) and the assumption that the coupling system is conservative.

4.6. A schematic representation of a rotating machine is shown in Fig. 4P.6. The rotor
winding is superconducting and the rotor has moment of inertiaJ. The machine is constructed
so that the electrical terminal relations are A, = L,i, + Mi r cos 0, A, = Mi, cos 0 + Li,.
The machine is placed in operation as follows:

(a) With the rotor (r) terminals open-circuited and the rotor position at 0 = 0, the
current i, is raised to 1,.

(b) The rotor (r) terminals are short circuited to conserve the flux Ar, regardless of
0(t) and i,(t).

(c) The current i, is constrained by the independent current source i(t).

__··_I·__ _·_·
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i(t)I

Fig. 4P.6

Write the equation of motion for the shaft with no external mechanical torque applied.
Your answer should be one equation involving 0(t) as the only unknown. Damping may
be ignored.
4.7. A smooth-air-gap machine with one winding on the rotor and one on the stator (see
Fig. 4.1.1) has the electrical terminal relations of (4.1.1) and (4.1.2).

A, = Li, + Lsr(O)ir, (4.1.1)

4,= L8,(0)i, + Li,. (4.1.2)

The mutual inductance L,,r() contains two spatial harmonics, the fundamental and the
third. Thus L,,r() = M1 cos 0 + M s cos 30, where M1 and M s are constants.

(a) Find the torque of electric origin as a function of i, i,, 0, M1 , and Ms.
(b) Constrain the machine with the current sources i, = I, sin co,t, i, = Irsin wrt and

the position source 0 = w,t + 7, where I,, I,, w,, w, and y are constants. Find
the values of w, at which the machine can produce an average torque and find an
expression for the average torque for each value of ow,. found.

4.8. The smooth-air-gap machine of Fig. 4.1.1 with the terminal relations given by (4.1.6)
to (4.1.8) is constrained as follows: single-frequency rotor current, i, = I,sinort; stator
current containing fundamental and third harmonic, i, = I,l sin ost + I,,sin 3ow,t; and
the position source 0 = cut + y, where I. 181, s83,IsO, c,, and y are constants. Find the
values of wo,at which the machine can produce an average torque and give an expression
for the average torque for each value of Co found.

4.9. Compute the torque T 6of (4.1.23) by using the electrical terminal relations of (4.1.19)
to (4.1.22) and the assumption that the coupling system is conservative.

4.10. A smooth-air-gap machine has a two-phase set of stator windings, each with a total
of N turns. The windings are distributed sinusoidally and currents in them produce surface
current densities as indicated in Fig. 4P.10. When g << R, the radial flux density produced
in the air gap by each winding (see Problem 4.1), is

Bro N cos V,
2g

-oNi.Br - Nib sin y.
2g



__

Problems

Magnetic axis of
stator a winding

- x+

Fig. 4P.10

(a) For the two-phase excitation i4 = I cos wt, ib = Ibsin owt, which is unbalanced
in amplitude, find the total radial flux density.

(b) Express the answer to part (a) as a sum of two traveling waves. Identify the
forward and backward components and show that their respective angular
velocities are wf = w and Wb = --w.

(c) Evaluate the ratio of the amplitudes of backward and forward waves. Show that
the ratio -k 0 for a balanced excitation (i.e., consider the limit for Ib - Ia).

(d) Discuss how to achieve a constant amplitude backward wave only. This is the
method used to reverse the direction of rotation of an ac machine.

4.11. Rework Problem 4.10 and replace the excitation of part (a) with ia = Icos cut,
ib = Isin (wt + f). This is a two-phase set of currents, balanced in amplitude but unbalanced
in phase. For part (c) balanced excitation occurs when P -- 0.
4.12. Use (4.1.53) as the starting point to show that for steady-state operation the electrical
power into a two-phase synchronous machine is equal to the mechanical power delivered,
as expressed by (4.1.54).

4.13. The two-phase equivalent of a large turbogenerator of the type now being used to
generate power is as follows:

2-phase
60 Hz, 2-pole
Rated terminal voltage, 17,000 V rms

· ·II_ ·~I 

1z sin

Magnetic axis
of stator b
winding
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Rated terminal current, 21,300 A rms
Rating, 724 x 106 VA
Rated power factor, 0.85
Armature inductance, L, = 4.4 x 10-3 H
Maximum value of armature-field mutual inductance, M = 0.030 H
Rated field current, If = 6100 A

Calculate and plot a family of V-curves for this generator. The V-curves are plots ofarmature
current versus field current at constant power and constant terminal voltage (see Fig.
4.1.15). Your family of curves should be bounded by rated armature and field current,
zero-power-factor, and 900 torque angle. Indicate which of these limits the curves. Also
indicate on your plot the 0 and 0.85 power factors, both leading and lagging, and the unity
power factor. Plot curves for 0, 1, J, 1, and full rated load of 615 MW and for rated armature
voltage. It will be convenient to normalize armature current to the rated value and field
current to that value necessary to produce rated terminal voltage with the armature
open-circuited.

4.14. It is customary to define the complex power produced by an alternator as P +-jQ,
where P is real power and Q is reactive power. For a two-phase machine with balanced
currents and voltages and a phase angle 0

va = Re (J7eijt), ia= Re (ieim),

vb = Re (--jPeJ~t), ib= Re (--jleWi'),

where 17 = V and I = le-J4. The complex power supplied by both phases is P + jQ =
Pl* = VI cos b + jVI sin 0. By convention Q > 0 when I lags 7"(the load is inductive).

A capability curve for an alternator is a plot of P versus Q for constant armature voltage
and for maximum allowable operating conditions defined by rated armature current,
rated field current, or steady-state stability (torque angle r approaching a critical value
which we take to be 900). Plot the capability curve for the alternator described in Problem
4.13 for operation at rated voltage. Indicate on your plot the limit that determines that
part of the curve. It is useful to normalize both P and Q to the rating of the alternator.

4.15. An automobile speedometer consists of a permanent magnet mounted on a rotating
shaft connected to the automobile transmission. An aluminum "drag cup" with a pointer
mounted on it is placed around this rotating magnet. The cup is free to rotate through an
angle cbut is restrained by a torsion spring that provides a torque T, = -Kry. The angular
position of the cup can be used to determine the angular velocity of the shaft connected to
the magnet and therefore the speed of the automobile. The model to be used in analyzing
the speedometer is illustrated in Fig. 4P.15. The permanent magnet is represented by a
coil excited by a constant-current source. The drag cup is simulated by two coils shunted
by resistances. These coils are attached to a rotatable frame, which in turn is restrained by
the torsion spring. An appropriate electrical model of the coupling field is

A1 = Mi. cos ( V- y)+ Lil,

A2 = Mi3 sin ( - ) + Li2,

A3 = L3i3 + Mi1cos (0 - v,)+ Mi2 sin ( - ).

Assuming that the rotational velocity of the shaft is constant (i.e., the speed of the car is
constant), find the deflection of the rotatable frame (of the speedometer pointer) as a
function of the shaft rotational velocity q&.You may assume that the device is designed in
such a way that

L <<IRil.
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4.16. For nomenclature, refer to Fig. 4.1.17. The two-phase equivalent of a large, two-pole,
polyphase, 60-Hz induction motor has the following parameters for operation at 60 Hz:
Rr = 0.100 ohm, oM = 4.50 ohms, and w,(L8 - M) = c,(L, - M) = 0.300 ohm.
Neglect armature resistance. For operation at a constant amplitude of armature voltage
V, = /2 500 V peak, calculate and plot torque, armature current, volt-ampere input,
electrical power input, and mechanical power output as functions of mechanical speed for
the range 0 < wco < c, = 120w rad/sec.

4.17. The induction motor of Problem 4.16 is driving a fan load with the torque speed
characteristic Tm = --Bwa s , where B = 7.50 x 10-6 N-M secS/rads. Assume steady-state
operation.

(a) For operation with balanced armature voltage of V, = Vi500 V peak calculate
the steady-state slip, mechanical power into the fan, electrical power input, and
power factor.

(b) Calculate and plot the quantities of part (a) as functions of armature voltage for
a range V2-450 < V, < V2'550 V peak.

4.18. This problem is a version of the machine analysis in Problem 4.1 but with a three-
phase winding on the stator. The geometry is illustrated in Fig. 4P.18; N , is the total number
of turns on each stator phase and Nr is the total number of turns in the rotor winding. The

_·_ 1_ 1 1_ _·_- ------------ __I
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Magnetic axis of
a-stator winding

Fig. 4P.18

surface current densities produced by the three armature currents on the surface at R + g are

Nio
K, = i z sin V,

2(R + g)

Kb =(.z Nb 2n

2(R + g) sin 3

K, = i, NJN, sin V 47)
2(R + g) 3

The surface current density due to rotor current on the surface at R is

K, = i z "1r sin (r - 0).
2R

Assumeg << R so that there is no appreciable variation in the radial component of magnetic
field across the air gap.

(a) Find the radial flux density due to current in each winding.
(b) Find the mutual inductance between the a and b windings on the stator.
(c) Write the electrical terminal relations for the machine.
(d) Find the torque T' of electrical origin.

"~-~'? ·
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4.19. Consider the machine in Problem 4.18 with the stator excitations

i, = I cos wt,

i= IbCOS (t - 2

ic= ccos 4t-- .

(a) Show that the radial component of air-gap flux density is expressible as a com-
bination of two constant-amplitude waves, one rotating in the positive 0-direction
with the speed cw and the other rotating in the negative 0-direction with speed ow.

(b) Show that when Ia = Ib = I the amplitude of the wave traveling in the negative
0-direction goes to zero.

4.20. A four-pole smooth-air-gap machine has a two-phase set of stator windings, each
with a total of N turns. The windings are distributed sinusoidally and currents in them
produce surface current densities as indicated in Fig. 4P.20. When g << R, the radial flux
density produced in the air gap by each winding is (see Problems 4.1 and 4.10)

PoNia
Bra = cos 2py,

2g

Brb = sin 2p.
2g

(a) For the two-phase excitation, i, = Ia cos wt, ib = Ibsin wt, which is unbalanced
in amplitude, find the total radial flux density.

(b) Express the answer to (a) as a sum of two constant-amplitude traveling waves.

24,

Fig. 4P.20

---- ·--- 11·-·1111 1 _·~X



Rotating Machines

Identify the forward and backward components and show that their respective
angular velocities are coi = cu/2 and cmo= --o/2.

(c) Show that the amplitude of the backward wave goes to zero when Ib = I.and
that the amplitude of the forward wave goes to zero when Ib = --I.

4.21. Rework Problem 4.20 for a p-pole-pair machine for which the component radial
air-gap flux densities are

Br - cospvy,
2g

FoNibBrb = sinpy.
2g

Assume the same excitation as in part (a) of Problem 4.20. In part (b) the forward and
backward waves have angular velocities wc= colp and cob = -w-op.
4.22. Derive the electromagnetic torque of (4.2.9), starting with the electrical terminal
relations of (4.2.7) and (4.2.8) and the assumption that the coupling system is conservative.

4.23. The salient-pole, synchronous machine of Fig. 4P.23 is electrically linear and lossless
and has a terminal inductance expressed as

L= L
(1 - 0.25 cos 40 - 0.25 cos 80) '

where Lo is a positive constant. This is an alternative mathematical representation to the
form given by (4.2.3).

(a) Describe briefly why the dependence of this inductance on 0 is physically
reasonable.

(b) Find the torque of electric origin Teas a function of flux linkage A,angle 0, and
the constants of the system.

(c) As shown in Fig. 4P.23, the terminals are excited by a sinusoidal voltage source
such that the flux Ais given by A(t) = A ocos ot, where A o and co are positive
constants. The rotor is driven by a constant-angular-velocity source such that
O(t) = Ot + 6, where 0 and 6 are constants. Find the values of Q,in terms of the
electrical frequency co, at which time-average power can be converted by the
machine between the electrical and mechanical systems.

W)

I
Fig. 4P.23
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4.24. The two-phase equivalent of a salient-pole, synchronous motor has the following
parameter values and ratings [see (4.2.28) to (4.2.30) for definitions]

2-phase 60 Hz
Rated output power, 6000 hp
Power factor, 0.8 leading
Rated armature voltage, 3000 V rms
Voltage coefficient, oM = 350 V/A
Direct axis reactance, o(Lo + L,) = 4 ohms
Quadrature axis reactance, w(Lo - L2) = 2.2 ohms
(a) Find the field current necessary to give maximum rated conditions at rated

voltage. This is rated field current.
(b) Calculate and plot a family of V-curves for loads of 6000, 3000, and zero hp and

rated voltage; V-curves are plots of armature current as a function of field current
for constant load power (see Problem 4.13). Indicate the factor that limits the
extent of the plot: rated armature current, rated field current, or steady-state
stability (pull-out torque is approached).

4.25. As discussed at the end of Section 4.1.6a, synchronous condensers are essentially
synchronous machines operating with no shaft torque. They are used for power-factor
correction and they are conventionally of the salient-pole type of construction. Start with
(4.2.41), assume zero shaft torque [y = 0 from (4.2.37)] and operation at constant armature
voltage amplitude, and construct vector diagrams to show the machine appearing capacitive
and inductive.

4.26. This is a problem that involves the use of a synchronous condenser to correct power
factor in a power system. The correction is actually achieved by using the synchronous
condenser to regulate voltage. We consider one phase of a balanced two-phase system. In
Fig. 4P.26a a power system feeds a steady-state load which has admittance Ye-jO as shown.

jx,

vs

t,

(b)

Fig. 4P.26
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The Thevenin equivalent circuit of the system, as viewed from the load, is the source P,
in series with the inductive reactancejX,. To fix ideas assume the following parameters and
excitations: V8 = v%2 100,000 V peak, X, = 10 ohms, Y = 0.01 mho.

(a) Find the ratio of the magnitudes of the load voltage Vand the source voltage V,
for 4 = 0 and 0 = 45 degrees.

(b) Now a synchronous condenser is connected across the load as shown in Fig.
4P.26b and draws current I. Find the volt-ampere rating required for the syn-
chronous condenser to make the ratio IPIII l", equal to unity for each case in
part (a). Compare each with the real power drawn by the load.

4.27. A two-phase, 60-Hz, salient-pole, 2-pole, synchronous motor has the following
ratings and constants:

Rated output power, 1000 hp
Rated armature volts, V2 1000 V peak
Rated power factor, unity
Direct axis reactance, co(Lo + L2) = 3.0 ohms
Quadrature axis reactance, w(Lo - L2) = 2.0 ohms
Speed voltage coefficient, woM = 150 V/A

One phase
of armature

voltage supply

0-

Fig. 4P.27

(a) The field winding of the motor is supplied from one phase of the supply by a
full-wave bridge rectifier as shown in Fig. 4P.27. The field winding inductance is
large enough that only the dc component of field voltage need be considered.
Calculate the total field circuit resistance Rf necessary to achieve unity-power-
factor operation at rated voltage with 1000 hp load.

(b) Calculate and plot the torque angle 6 as a function of armature supply voltage
from 10 per cent above rating down to the value at which the motor can no longer
carry the load.

4.28. The two-phase equivalent of a large, salient-pole, 72-pole, water-wheel generator of
the type now being used has the following constants and ratings:

Rating, 200 x 106 V-A
Frequency, 60 Hz
Power factor, 0.85 lagging
Rated terminal voltage, 10,000 V rms
Rated armature current, 10,000 A rms
Armature inductance, L, = 2.65 x 10- 3 H

L, = 0.53 x 10- 3 H
Maximum armature-field mutual inductance, M = 0.125 H
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(a) Calculate the field current necessary to achieve rated conditions of armature
voltage, current, and power factor.

(b) Plot a capability curve for this generator. See Problem 4.14 for a description of a
capability curve. In this case the stability limit of maximum steady-state torque
will occur for 6 < 900 (see Fig. 4.2.6).

4.29. Figure 4P.29 shows a pair of grounded conductors that form the rotor of a proposed
rotating device. Two pairs of fixed conductors form the stator; one pair is at the potential

Fig. 4P.29

tes

Fig. 4P.30
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v1 and supports a total charge ql; the other is at the potential v2 and supports the total
charge qg. Given that q, = Co(1 + cos 20)v1 , q2 = Co(l + sin 20)v2, where Co is a given
positive constant,

(a) what is the electrical torque exerted on the rotor in the 0 direction?
(b) The voltages v1 and v2 are now constrained to be v1 = Vo cos wt, v, = Vo sin cit.

Under what condition(s) will the device produce a time-average torque?
(c) Under the condition(s) of (b), what is the time-average torque?

4.30. A pair of capacitor plates is attached to a rotating shaft in such a way that when 0 is
zero they are directly opposite a pair of fixed plates. It is assumed that the variation in
capacitance can be approximately described by the relation C = Co + C1 cos 20. If a
potential difference v(t) = Vo sin wot is applied to the plates through a slip ring, what are
the shaft rotational velocities at which the device can behave like a motor?


	GE: Courtesy of General Electric Company. Used with permission.


