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Chapter 12

ELECTROMECHANICS
OF INCOMPRESSIBLE,

INVISCID FLUIDS

12.0 INTRODUCTION

We are all familiar with the distinctions between the three pure states of
matter: solids, liquids, and gases. A solid body possesses a definite shape and
size that is retained unless the body is acted on by outside forces. A given
mass of liquid possesses a definite size (volume) but conforms in shape to its
container. A particular mass of gas possesses neither definite size (volume)
nor shape because it will deform to fill completely whatever vessel it occupies.

Liquids and gases are grouped together and called fluids when their
dynamic behavior is to be studied. The essential difference between a solid
and a fluid is that the force necessary to deform a solid is a function of the
deformation (strain), whereas in a fluid the force necessary to produce a
deformation is a function of the rate of deformation (strain rate) and a
hydrostatic pressure. A fluid left to itself in a force-free environment will
relax to a state that has no internal stresses except an isotropic (hydrostatic)
pressure balanced by the surface forces exerted by the container or by
surface tension.

Although because of some similarities liquids and gases are classified
together as fluids, they also exhibit striking differences. Moderate changes
in temperature and pressure cause very small fractional changes in the density
of a liquid but the corresponding changes in a gas are quite large.

All real fluids exhibit internal friction that is described mathematically by
the property called viscosity. The effects of viscosity can be large or small,
depending on the physical situation being studied. It is standard practice for
an electrical engineer to represent a real coil of wire mathematically by an
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ideal, lossless circuit element called inductance. Similarly, the fluid dynamicist
often uses an idealization of a fluid in which viscosity is neglected. Such an
idealization is called an inviscidfluid.

In most electromechanical systems involving fluids the principal effects of
viscosity result from the contact between the fluid and a solid boundary. As
in most continuum problems, the effect of the boundary becomes less pro-
nounced at greater distances from the boundary. Thus, when the behavior of
a fluid is desired far from a boundary, an inviscid model is often adequate.
How a distance that is adequate for the neglect of viscosity is determined is
a rather complex subject and depends quite naturally on the system to be
analyzed and the accuracy desired. Much experimental and theoretical data
are available to answer this question.* We address ourselves to a few simple
cases in which viscosity is important in Chapter 14.

Our purpose in this book is to present models and do analyses of systems
in which electromechanical interactions are important. This means essentially
that for coupling with a fluid the electromechanical forces must dominate the
viscous forces. It is fortuitous that many situations exist in which this occurs,
notably magnetohydrodynamic pumps and generators and plasma accel-
erators.t Consequently, our use of an inviscid fluid model is realistic with
respect to the dominant electromagnetic forces and viscous effects can be
added later as perturbations.

When a fluid flows past a solid boundary, the fluid friction makes the fluid
particles that are in contact with the boundary remain at rest with respect
to the boundary. This makes the flow of fluid parallel to the boundary vary
with distance from the boundary and introduces a shear rate into the flow.
At low velocities each fluid particle flows along a smooth path (a streamline),
and the flow is said to be laminar.At high velocities the shearing effect of the
boundary makes the flow unstable and each fluid particle has a significant
random motion in addition to its average motion in the direction of flow.
This flow regime is said to be turbulent. When a flow becomes turbulent, its
internal friction (viscous) losses increase. In spite of this, we can often
represent a fluid in turbulent flow in terms of a steady flow at the average
velocity and obtain a good model for electromechanical interactions.

Compressibility is a property of a fluid that describes the fact that when
the hydrostatic pressure on the fluid is increased the density increases. Every
fluid exhibits this property to some extent. Liquids are only slightly com-
pressible, whereas gases are highly compressible. Compressibility to fluids is

*H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1960, pp.
1-41.
t These situations are illustrated graphically in the film entitled "Magnetohydrodynamics"
produced for the National Committee on Fluid Mechanics Films by Education Develop-
ment Center, Newton, Mass.
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what elastic modulus is to elastic solids. Thus we expect a compressible fluid
to transmit longitudinal (sound) waves just as an elastic solid does. When we
are interested in the flow ofa liquid, the compressibility can often be neglected.
This is analogous to the treatment of the gross motion of an elastic solid as
the motion of a rigid body. Even though a gas is highly compressible, we
can sometimes treat gas flow by using an incompressible fluid model,
especially at very low flow velocities. In other cases the compressibility of a
gas will have a marked effect on the flow, and we must account for it in our
mathematical model.

Our interest here is in electromechanical interactions; in each case we
select the simplest mathematical model that illustrates the physical phenomena
of interest in a realistic way. Thus in many cases we use a simple fluid model
that adequately illustrates the electromechanical interactions but ignores some
fluid-mechanical phenomena. The inclusion of such phenomena is beyond
the scope of this book. For further information on these topics the reader can
consult a good treatise on fluid mechanics.* In this chapter we investigate
various phenomena that result from electromechanical interactions with
incompressible, inviscid fluids. In Chapter 13 we treat compressible inviscid
fluids and in Chapter 14 introduce viscosity.

12.1 INVISCID, INCOMPRESSIBLE FLUIDS

An incompressible inviscid fluid model lends itself to simple mathematical
analysis and to an understanding of many fluid-mechanical phenomena.
Moreover, it provides considerable insight into the fundamental interactions
of magnetohydrodynamics (MHD) and often gives an accurate description
of MHD interactions with liquid conductors such as liquid metals.

In what follows we first introduce the equations of motion for an in-
compressible inviscid fluid and then consider some simple, fluid-mechanical
examples. Finally, we investigate the important electromechanical interactions
appropriate for study with this model.

12.1.1 The Substantial Derivative

In the study of fluid mechanics we are concerned with describing the fluid
motion and relating it to the applied forces and boundary conditions. Most
often the desired information consists of determining a flow pattern in a
region of space at a given instant of time. Because of this desired result, fluid
dynamicists have focused their attention on fluid variables at a given position
in relation to a fixed reference frame. Since the fluid is moving past this point,
different material elements occupy the point at different instants in time. This

* See, for example, Schlichting, op. cit.
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method of representing fluid properties (such as velocity) in terms of a fixed
point in space is called an Eulerian or field description. An alternative
method, called the Lagrangian description, gives the velocity and other
properties of the individual particles.

The best-known example of the use of the Lagrangian description is in
particle dynamics (or the rigid-body mechanics of Chapter 2) in which it is
conventional to ascribe to each particle (or mechanical node) a velocity v
which is a function of the initial position (a, b, c) of the particle and of time t.
Thus v(a, b, c, t) describes the velocity of a particular particle. This same
method is carried over into continuum mechanics by describing the velocity
v(a, b, c, t) of the grain of matter at position a,b, c at t = 0. This Lagrangian
description was used in Chapter 11, in which the displacement of a grain of
elastic material was written as a function of the unstrained (initial) position.

For electrical engineering students the best-known example of the use of an
Eulerian description is in electromagnetic field theory. We usually describe
the electromagnetic field and source quantities as functions of space and time.
Thus for a cartesian coordinate system (xx, x, x3) we give the electric field
intensity as E(xl, x2, x3, t). This prescribes the field intensity at the point
(xx, ,x, at any instant of time t. Using the Eulerian description, we can
describe a velocity field v(xx, xz, zX,t) that ascribes a velocity to a position
in space rather than to a particular grain of matter. At the point (zx,4z, x,)
the velocity v(x', 4x,4, t') specifies the velocity of that grain of matter that
occupies the point (x4, x2, xz)at the instant of time t'. If at a later time t" this
grain of matter is at point (x•, x~,x), its velocity will be v(4x, x", x", t").
The Eulerian system is normally used in the study of fluid mechanics and is
also used here.*

Later in this chapter we shall need the time derivative of an Eulerian
function as experienced by a particular grain of matter. The acceleration of a
grain of matter is such a derivative and we shall need it to write Newton's
second law.

Consider a system of moving matter with an Eulerian or field description
of the velocity, v(x, 2,x 3, t) and of the quantityf(xx, , X 3, at). It is necessary
to find the time rate ofchange off experienced by a grain of matter. Consider
the grain of matter that occupies position (xx,X2,x3) at time t and has
velocity v(xx, x2,X, t) with components vx, v2 , and vs. At time (t+ At) the
grain will occupy a new position, given to first order in (At) by (xx + v1 At,
X2 + v 2 At, Xa + vs At).Thus in the interval (At) the grain has experienced a
change in f of

Af= f(x 1 +v 1 At,x2 + v2At,xs + Vs At, t+ At) - f(X1, x2,xs, t) (12.1.1)

* For a more thorough discussion of these alternative representations, see, for example,
H. Lamb, Hydrodynamics, 6th ed., Dover, New York, 1945, Chapter I, Articles, 4 to 9,
13, and 14.

12.1.1
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The first term in this expression is expanded in a Taylor series about the
point (x1, x, x,, t) and second- and higher order terms in At are discarded to
obtain

af af af afAf - At + -v At + - v2 At + - v3 At. (12.1.2)
atxi ax, ax3

The desired time rate of change is defined as

Df = lim Af (12.1.3)
Dt At-o At

Substitution of (12.1.2) into (12.1.3) yields

of af af af afS= + + + ,(12.1.4)
Dt at ax1 ax2 ax3

which is written in the compact form

Df af
= - + (vV)f. (12.1.5)

Dt at

The function f may be considered to be one component of a cartesian
vector f.Equation 12.1.5 holds for each component ofthe vector; consequently,
the time rate of change of a vector field quantity f(x,, x2, x,, t) experienced
by a grain of matter is given by

Df =f
D + (v.V)f. (12.1.6)

Dt at

This derivative is variously called the Stokes, total, particle, material,
substantial, or convective derivative.

The interpretation of the physical meaning of (12.1.5) or (12.1.6) is quite
simple. It merely states that an observer moving with the velocity v, relative
to the coordinate system (x1, x2, x,) in which the quantity f(x,, xz, x,, t) is
defined, will detect a time rate of change off made up of two parts: (af/at) is
the rate of change of f at a fixed point and (v - V)f is the change in f that
results from the motion of the observer through a fixed (in time) distribution
off. In fact, (v . V)f is simply the space derivative off taken in the direction of
v and weighted by the magnitude of v.

An example of the application of (12.1.6), which will occur in Section
12.1.3 is the acceleration of a grain of matter moving in a velocity field
v(x 1, •2,x3 , t). According to (12.1.6),

Dv av
- = - + (v .V)v. (12.1.7)
Dt at
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Example 12.1.1. As an example of the calculation ofan acceleration, consider the velocity

V
v = V ° (ix 2 - ikXl), (a)

a

where Vo and a are positive constants. This will be recognized as the velocity of a fluid
undergoing a rigid-body rotation about the xa-axis. In fact, the angular velocity of the fluid
is Vo/a, where r =-VX2 + x2

2 is the radial distance from the x-axis. Note that av/at= 0.
Yet we know that the fluid is accelerating (centrifugal acceleration), and it is this accelera-
tion that is given by the second term in (12.1.7), which becomes

DV 1r + a"'' " V2a '2' (b)(vv,i+ vy + xLV , (b)I+

because va and al/ax are zero. Substitution of (a) into (b) gives

Dv 2V
- = L[-x(l)]iJ + [x2(--)li (c)

as the acceleration of the fluid. This acceleration is directed radially inward toward the
;x-axis and has the expected magnitude (Vjoa)2r (the centrifugal acceleration).

We now obtain differential equations of motion that are appropriate for
studying the dynamical behavior of incompressible inviscid fluids. We obtain
the desired equations from two postulates:

1. Conservation of mass.
2. Conservation of momentum (Newton's second law).

The validity of these postulates has been verified by a variety of experiments.

12.1.2 Conservation of Mass

The conservation of mass states that mass can be neither created nor
destroyed and thus must be conserved. To apply this postulate to a particular
system consider the system of Fig. 12.1.1 in which an arbitrary volume V
enclosed by the surface Sis defined in a region containing material with a mass

Fig. 12.1.1 Definition of system for writing conservation of mass.

12.1.2

x3
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density p(x,, x2, xz, t) (kg/m3) and a velocity v(x1,x, x3, t) (m/sec). A
differential volume element is dV, a differential surface element is da, and the
normal vector n is normal to the surface and directed outward from the
volume.

Because mass must be conserved, we can write the expression for the system
in Fig. 12.1.1:

5 (pv n) da = fv dV. (12.1.8)

The left side of this expression evaluates the net rate of mass flow (kg/sec)
out of the volume V across the surface S. The right side indicates the rate at
which the total mass within the volume decreases. Note the similarity between
(12.1.8) and the conservation of charge described by (1.1.26)* in Chapter 1.

Example 12.1.2. The system in Fig. 12.1.2 consists of a pipe of inlet area Atand outlet
area Ao.A fluid of constant density p flows through the pipe. The velocity is assumed to be
uniform across the pipe's cross section. The instantaneous fluid velocity at the inlet is

Vi = i1vi

and is known. We wish to find the velocity vo at the outlet.
We use the closed surface S indicated by dashed lines in Fig. 12.1.2 with the conservation

of mass (12.1.8) to find v,. Because the density p is constant,

(v.n)da = 0.

The only contributions to this integral come from the portions of the surface that coincide
with the inlet and outlet. The result is

(v. n)da = [vs •(-il)]Ai + (vo.il)Ao = 0

from which
Ag

vo = ilVo = i1 v .

This expresses the intuitively apparent fact that in the steady state as much fluid leaves the
closed surface S as enters it.

Area Ai Area A.

L-------------------
Surface S -

-
"

Fig. 12.1.2 Example for application of conservation of mass.

* Table 1.2, Appendix G.
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We now write (12.1.8) in differential form by using the divergence theorem*

f(A* n) da = (V* A) dV

to change the surface integral in (12.1.8) to a volume integral

f(-v) dV = - t dV. (12.1.9)

The time derivative has been taken inside the integral sign because we assume
that the volume V is stationary. This expression holds for any arbitrary
volume V; therefore it must hold for a differential volume. Thus

V. pv = a (12.1.10)
at

which is the partial differential equation that describes the conselvation of
mass.

The left side of (12.1.10) can be expanded and the terms rearranged to
obtain

p(V. v) = - , (12.1.11)
Dt

where the derivative on the right is the substantial derivative defined by
(12.1.5). Equation 12.1.11 relates the rate of density decrease in a grain of
matter to the divergence of the velocity and is in a form particularly useful
when studying incompressible fluids because then the time rate of change of
the density as viewed by a particle of fluid is zero, that is, Dp/Dt = 0.
Equation 12.1.11 indicates that in this case the velocity field has no divergence
(V -v = 0).

12.1.3 Conservation of Momentum (Newton's Second Law)

The second postulate of fluid mechanics is that Newton's second law of
motion (conservation of momentum) must hold for each grain of matter.
To express this postulate mathematically we assume that in the coordinate
system (x1, xz, zx) there exists a fluid of density p(zx, x, xa, t) moving in a
velocity field v(x1 , xz, x3, t). The mass of a grain of matter occupying the
differential volume element dxz dx, dx, is p dx1 dxr dx,. We multiply this mass
by the instantaneous acceleration found in (12.1.7) and equate the result to

* F. B. Hildebrand, Advanced Calculusfor Engineers,Prentice-Hall, New York, 1948, pp.
312-315.

12.1.3
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the total force f applied to the grain of matter*

p(dx dx, dx,) + ( V)v = f. (12.1.12)

We now divide both sides of this expression by the volume element and define
the force density F as

F = (12.1.13)
dx1 dxs dx 3

to obtain the result

Dv av
p - = p - + p(v- V)v = F. (12.1.14)

Dt at

This is the differential form of the conservation of momentum equation that we
use most often in our treatment of continuum electromechanics.

The force density F in (12.1.14) can be written as

F = F' + pg + Fm , (12.1.15)

where F" represents the electromagnetic forces that were expressed in various
forms in Sections 8.1 and 8.3 of Chapter 8f, pg represents the force density
resulting from gravity, and Fm represents mechanical forces applied to the
grain of matter by adjacent material. This latter force density F' depends
on the physical properties of the fluid and will thus be described in Section
12.1.4 (on constituent relations).

Equation 12.1.14 can be expressed in a particularly simple and often useful
form when we recognize that the force density on the right can be expressed
as the space derivative of a stress tensor. We have already shown in Sections
8.1 and 8.3 of Chapter 8 that this is true. The ith component of the electro-
magnetic force density Fe is

Fie = , (12.1.16)

where T1j' is the Maxwell stress tensor given for magnetic-field systems by
(8.1.11)t and for electric field systems by (8.3.10)t. Because the gravitational
field is conservative, we can write the gravitational force as the negative

* Newton's second law, written as f = Ma, applies only for a mass M of fixed identity.
Because DvIDt is a derivative following a grain of matter, it is the acceleration of a set of
mass particles (p dx1 dx2 dx3) of fixed identity. Thus (12.1.12) is a valid description of
Newton's second law written as f = Ma and is valid even when p is changing with space
and time.
t See Table 8.1, Appendix G.

__
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gradient of a scalar potential. We define the gravitational potential as U and
write

pg = -VU, (12.1.17)

or, in index notation, the ith component is

aU 8
pg, = - - = (61,U). (12.1.18)

We obtain the force density F" of mechanical origin as the derivative of a
stress tensor in Section 12.1.4 and therefore assume that the ith component
of the mechanical force density F" is

F , (12.1.19)
ax,

where T,"j is the mechanical stress tensor to be calculated later.
Now the total stress tensor T~, for the system is

Toi = Til" _ 6ijU + Tim, (12.1.20)

and we can express the ith component of (12.1.14) simply as

Dvy aT8,
p ' (12.1.21)

Dt ax,

This form is particularly useful in applying boundary conditions.
Equation 12.1.14 is often useful when it is expressed in integral form. To

achieve this end we multiply the conservation of mass (12.1.11) by the velocity
v and add it to (12.1.14) to obtain

pD + vD + p(V . v) = F. (12.1.22)
Dt Dt

Because zero has been added to the left side of (12.1.14), (12.1.22) still
expresses Newton's second law. Combination of the first two terms of
(12.1.22) into the derivative of the product (pv) and use of the definition of
(12.1.6) leads to

d(pv) + (v V)pv + pv(V v) = F. (12.1.23)
at

The ith component of this expression is

(pv_•) + (v . V)pvi + pv,(V -v) = F,. (12.1.24)

12.1.3
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Combination of the second two terms on the left side of this expression yields

+ (V . pvv) = F,. (12.1.25)
at

We now integrate (12.1.25) throughout a volume V to obtain

fa(pv) dV+f (V- pvv)dV= F,dV. (12.1.26)

The divergence theorem is used to change the second term on the left to an
integral over the surface S that encloses the volume V and has the outward
directed normal n; thus

f a(Pv)dV + pvi(v' n) da = F, dV. (12.1.27)

Using the definition of the total force density in terms of a stress tensor* in
(12.1.21), we can also write (12.1.27) as

afPidV + pv1(v,n) da = Tdnj da. (12.1.28)

Equation 12.1.27 can be written for each of the three components and then
combined to obtain the vector form

f (Pv) dV +% pv(v n) da = F dV. (12.1.29)

This is the integral form of the equation that expresses conservation ofmomen-
tum (Newton's second law).

The momentum density of the fluid is pv; consequently, the first term on
the left of (12.1.29) represents the time rate of increase of momentum density
of the fluid that is instantaneously in the volume V. The second term gives
the net rate at which momentum density is convected by the flow out of the
volume V across the surface S. Thus the left side of (12.1.29) represents the
net rate of increase of momentum in the volume V. The right side of (12.1.29)
gives the net force applied to all the matter instantaneously in the volume V.

12.1.4 Constituent Relations

To complete the mathematical description of a fluid we must describe
mathematically how the physical properties of the fluid affect the mechanical
behavior. The physical properties of a fluid are described by constituent
relations (equations of state), and the form of the equations depends on
the fluid model to be used.

* See (8.1.13) and (8.1.17) of Appendix G.
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A homogeneous, incompressible fluid, which is the model we are con-
sidering at present, has constant mass density, independent of other material
properties (density and temperature) and of time. Thus one constituent
relation is

p = constant. (12.1.30)

This constituent relation is normally expressed in a different form by
substituting (12.1.30) into (12.1.11) to obtain the equation

V. v = 0, (12.1.31)

which is the mathematical description normally used to express the property
of incompressibility. Note, however [from (12.1.11)], that p does not have
to be constant for (12.1.31) to hold. The fluid could be inhomogeneous and
still be incompressible.

The next step in the description of physical properties is to determine how
the mechanical force density Fm of (12.1.15) arises in a fluid.

First, consider a fluid at rest. By definition, a fluid at rest can sustain no
shear stresses. Moreover, a fluid at rest can sustain only compressive stresses
and a homogeneous, isotropic fluid will sustain the same compressive stress
across a plane of arbitrary orientation. This isotropic compressive stress is
defined as a positive hydrostatic pressure p.

We can define a mechanical stress tensor for the fluid at rest in the nomen-
clature of Sections 8.2 and 8.2.1*. Thus, because there are no shear stresses,

Ti •m = 0, for i j. (12.1.32)

The normal stresses are all given by

Tllm = T22m = Ta' = -p. (12.1.33)

The information contained in (12.1.32) and (12.1.33) can be written in com-
pact form by using the Kronecker delta defined in (8.1.7) of Chap. 8*;
therefore

Tijm = - 6• ,p. (12.1.34)

We can verify that the stress tensor in (12.1.34) describes an isotropic,
normal compressive stress by calculating the traction* r- applied to a surface
of arbitrary orientation. To do this assume a surface with normal vector

n = ni, + nti2 + n3i3. (12.1.35)

Now use (8.2.2) of Chapter 8 with (12.1.34) and (12.1.35) to calculate the ith
component of rm,

7•, = Tm"n, = -p 6ijnj = -pn, (12.1.36)

The vector traction then is

r • = -p(nji1 + n2i2 + n3ai) = -pn. (12.1.37)
*Appendix G.

12.1.4
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x3

x2

Fig. 12.1.3 Example for the application of stress tensor to a fluid at rest.

This traction is normal to the surface and in the direction opposite to the
normal vector n. Thus the stress tensor of (12.1.34) describes an isotropic
compressive stress.

The pressure p may be a function of position; consequently, a volume
force density can result from a space variation of pressure. To find this force
density we use (8.2.7)* to evaluate the ith component

Fim•• = 6 a (12.1.38)
ax, azi ax

When the three components are combined, the vector force density becomes

F i, + LP i +
\x1 ax2 ax3 / (12.1.39)

F" = -Vp.

Example 12.1.3. As an example of the application of this mechanical force density,
consider the system shown in Fig. 12.1.3 which consists of a container of lateral dimensions
l2 and 1 and filled to a height 1.with a fluid ofconstant mass density p.The acceleration of
gravity g acts in the negative xz-direction. The fluid is open to atmospheric pressure Po at
the top. We wish to find the hydrostatic pressure at any point in the fluid.

The fluid is at rest, so the acceleration is zero. Moreover, the only forces applied to the
material are the force of gravity and the mechanical force from adjacent material. Thus the
conservation of momentum (12.1.14) and (12.1.15) yields for this system

0= -ilpg - Vp.
In component form this equation becomes

apx

0=

0= a

* See Appendix G.
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We integrate these three equations to find thatp is independent ofx 2 and x3 and is given in
general by

p = - pgX1 + C.
The integration constant C is determined by the condition that in the absence of surface
forces the pressure must be continuous at xL = 11.Thus

P = Po + pg(1
1 - 2x).

Equations 12.1.34 and 12.1.39 describe mechanical properties of a fluid at
rest. In a real fluid, motion will result in internal friction forces that add to the
pressure force. In an inviscid fluid, however, motion results in no additional
mechanical forces other than the forces of inertia already included in the
momentum equation (12.1.14). Consequently, in the inviscid model the only
mechanical force density [Fm in (12.1.15)] results from a space variation of
pressure expressed by (12.1.39).

For an incompressible inviscid fluid the physical properties are completely
specified by (12.1.31) and (12.1.39). Therefore, when boundary conditions
and applied force densities (electrical and gravity) are specified, these
constituent relations and (12.1.14) can be used to determine the motion of the
fluid. We treat first some of the purely fluid-mechanical problems to identify
the kinds of flow phenomena to be expected from this fluid model and then
add electromechanical coupling terms.

12.2 MAGNETIC FIELD COUPLING WITH INCOMPRESSIBLE
FLUIDS

An important class of electromechanical interactions is describable by
irrotational flow; that is,

V x v = 0. (12.2.1)

When such an approximation is appropriate, the equations of motion can be
solved quite easily because a vector whose curl is zero can be expressed as the
gradient of a potential. Thus we define the class of problems for which (12.2.1)
holds as potentialflow problems and we define a velocity potential0 such that

v = -- V. (12.2.2)

For incompressible flow V • v = 0 from (12.1.31) and the potential 0 must
satisfy Laplace's equation

V24 = 0. (12.2.3)

A solution of a potential flow problem then reduces to a solution of Laplace's
equation that fits the boundary conditions imposed on the fluid.

We can now establish some important properties of potential flow. The
momentum equation (12.1.14) takes the form

p -t+ p(v . V)v = -Vp - VU + F , (12.2.4)
at
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where we have used the definition of the substantial derivative in (12.1.6)
and the definition of the gravitational potential U in (12.1.17). The use of
the vector identity (. V)v = IV(v2) - v x (V x v),

where v2 = v . v, and (12.2.1) yields (12.2.4) in the alternative form

p - + 2p V(v2) = -Vp - VU + Fe. (12.2.5)

We now use the facts that p is constant, that the space (V) and time (alat)
operators are independent, and that the velocity is expressed by (12.22) to
write (12.2.5) in the form

V pt + pV + p + U =F. (12.2.6)

By taking the curl of both sides of (12.2.6) we find that potential flow is
possible only when V x Fe = 0. (12.2.7)

If this condition is not satisfied, the assumption that V x v = 0 is not valid.
Thus we restrict the treatment of the present section to electromechanical

interactions in which the force density of electrical origin has no curl (12.2.7).
In view of (12.2.7), we express the force density Fe as

Fe = --Vy, (12.2.8)

where y, is an electromagnetic force potential, and write (12.2.6) as

at + po2 + p + U + V) = 0. (12.2.9)

The most general solution for this differential equation is

p• + po2 + p + U + ? = H(t); (12.2.10)

that is, this expression can be a function of time but not a function of space.
When the flow is steady, a/lat = 0 and none of the other quantities on the

left of (12.2.10) is a function of time. Then (12.2.10) reduces to
Ipv2 +p + U + V = constant. (12.2.11)

This result, known as Bernoulli's equation, expresses a constant of the
motion and is useful in the solution of certain types of problem.

Example 12.2.1. As an example of the application of Bernoulli's equation, consider the
system in Fig. 12.2.1. This system consists of a tank that is open to atmospheric pressure Po
and filled to a height h1 with an inviscid, incompressible fluid. The fluid discharges through a
small pipe at a height h2 with velocity v2 . The area of the tank is large compared with the
area of the discharge pipe; thus we assume that the tank empties so slowly that we can
neglect the vertical velocity of the fluid and consider this as a steady flow problem.
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Po

Fig. 12.2.1 Example of application of Bernoulli's equation.

There are no externally applied forces other than pressure and gravity, which has a down-
ward acceleration g. We wish to find the discharge speed v2.

The gravitational potential U is
U = pgx,

where we assume that x is measured from the bottom of the tank. (We could choose any
other convenient reference point.)

Application of Bernoulli's equation (12.2.11) with 1p = 0 (there are no electromagnetic
forces) at the top of the fluid and at the outlet of the discharge pipe yields

Po + pgh = Po + Pghz + 2pv21,
from which

V2 = V22(h 1 - k).

We now apply the equations of motion for potential flow to examples
involving electromechanical coupling.

12.2.1 Coupling with Flow in a Constant-Area Channel

We first consider the flow of an incompressible inviscid fluid in a hori-
zontal channel with the dimensions and coordinate system defined in Fig.
12.2.2. At the channel inlet (x1 = 0) the fluid velocity is constrained to be

=I

Fig. 12.2.2 A channel of constant cross-sectional area.
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uniform and in the x,-direction

v(0, X2, x3, t)= itvo(t). (12.2.12)

At a fixed channel wall, the normal component of velocity must be zero
and the tangential component is unconstrained (for an inviscid fluid);
consequently, the velocity of flow throughout the channel is

v(x 1, x 2, x3, t) = ilvo(t) (12.2.13)

and the velocity potential is

(x1, x2, x 3, t) = -x 1 Vo(t). (12.2.14)

Note that this potential satisfies Laplace's equation (12.2.3) and the boundary
conditions.

Equation 12.2.13 is the velocity distribution in the constant-area channel
with the boundary condition specified (12.2.12) regardless of the space
distributions or time variations of applied force densities but with the restric-
tion that these force densities be irrotational (12.2.7).

12.2.1a Steady-State Operation

In this section we analyze a simple coupled system that is the basic con-
figuration for illustrating the most important phenomena in magnetohydro-
dynamic (MHD) conduction machines. In spite of the myriad factors
(viscosity, compressibility, turbulence, etc.) that affect the properties of real
devices, the model presented is used universally for making initial estimates of
electromechanical coupling in MHD conduction machines of all types.

The basic configuration is illustrated in Fig. 12.2.3 and consists of a rec-
tangular channel of length 1,width w, and depth d, through which an electrically

Electrode

xl

Fig. 12.2.3 Conduction-type, MHD machine.
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conducting nonmagnetizable fluid flows with velocity v in the xz-direction.
The two channel walls perpendicular to the x,-direction are insulators and the
two walls perpendicular to the xz-direction are highly conducting electrodes
from which terminals are connected to an external circuit. The flux density
B is in the z,-direction and is produced by external coils or magnets not
shown. The electrical conductivity a of the fluid is high enough that the
system can be modeled as a quasi-static magnetic field system.

We are considering an inviscid fluid model and we assume that the inlet
(xl = 0) velocity is uniform as expressed by (12.2.12); thus the velocity is
uniform throughout the channel as expressed by (12.2.13). We neglect
fringing magnetic fields and the magnetic field due to current in the fluid*
and assume that B is uniform:

B = i2B, (12.2.15)

where B is constant. Because we are dealing with a steady-flow problem with
time-invariant boundary conditions, al/at = 0 and Faraday's law yields

V x E = 0. (12.2.16)

Once again we neglect fringing fields at the ends of the channelt and obtain
the resulting solution

V
E = -i3 -, (12.2.17)

where V is the potential difference between the electrodes with the polarity
defined in Fig. 12.2.3.

We now use Ohm's law for a moving conductor of conductivity a (6.3.5),

J = a(E + v x B) (12.2.18)

to write the current density for the system of Fig. 12.2.3 as

J = ia Z(- + voB . (12.2.19)

Note that this current density is uniform and therefore satisfies the conservation
of charge condition V , J = 0. Because the current density is uniform, it can

* The neglect of the self-field due to current in the fluid is justified for MHD generators
when the magnetic Reynolds number based on channel length is much less than unity (see
Section 7.1.2a).
t This assumption is quite good provided the 11w ratio of the channel is large (five or more).
This result has been obtained in a detailed analysis of end effects by using a conformal
mapping technique. The results of this analysis are presented in "Electrical and End Losses
in a Magnetohydrodynamic Channel Due to End Current Loops," G. W. Sutton, H.
Hurwitz, Jr., and H. Poritsky, Jr., Trans. AIEE (Comm. Elect.), 81, 687-696 (January
1962).

1_1 _ __·
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be related to the terminal current by the area of an electrode; thus

I
J = i, - . (12.2.20)

Id

To obtain the electrical terminal characteristics of this machine, we combine

(12.2.19) and (12.2.20) to obtain

IR, = - V + voBw, (12.2.21)

where we have defined the internal resistance R, as

w
R = -- (12.2.22)

aid

Equation 12.2.21 can be represented by the equivalent circuit of Fig. 12.2.4.
The open-circuit voltage (voBw) is generated by the motion of the conducting
fluid through the magnetic field and has the same physical nature as speed
voltage generated in conventional dc machines using solid conductors (see

Section 6.4). This speed voltage can supply
Ri - current to a load through the internal resist-

+ ance R, which is simply the resistance that
would be measured between electrodes with

vBw v the fluid at rest. From an electrical point
of view the electromechanical interaction0 occurs in the equivalent battery (voBw) in

Fig. 12.2.4 Electrical equivalent Fig. 12.2.4.
circuit of conduction-type MHD To describe the properties of the MHD
machine. machine of Fig. 12.2.3, viewed from the

electrical terminals, we have obtained a re-
lation between terminal voltage and terminal current (12.2.21). From a
mechanical point of view a similar relation is that between the pressure
difference over the length of the channel and the velocity through the channel.
This mechanical terminal relation is obtained from the xl -component of the
momentum equation (12.2.4):

0 = p IB (12.2.23)
ax, Id

Integration of this equation over the length of the channel yields

IB
Ap = B (12.2.24)

d

where the pressure rise Ap is defined by

Ap = p() - p(0). (12.2.25)
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MHD machine
f--- !----

Ri

I + +

Fig. 12.2.5 MHD conduction machine with a constant-voltage constraint on the electrical
terminals.

Equation 12.2.24 indicates that for this system the pressure rise along the
channel is a function of the terminal current only and independent of the
fluid velocity. This is reasonable because the pressure gradient is balanced
by the J x B force density, regardless of the velocity. For an arbitrary
electrical source or load the pressure rise will vary with velocity because the
current depends on velocity through (12.2.21).

To study the energy conversion properties of the machine in Fig. 12.2.3 we
constrain the electrical terminals with a constant-voltage source V, as indicated
in Fig. 12.2.5 and study the behavior of the device as a function of the fluid
velocity vo. For this purpose we use (12.2.21) to find the current I as

voBw - 1VI w - V (12.2.26)
R,

Substitution of this result into (12.2.24) yields for the pressure rise

B
Ap = - 1 (voBw - Vo). (12.2.27)

dR,

The current and pressure rise are shown plotted as functions of velocity v.
in Fig. 12.2.6.

To determine the nature of the device we define the electric power output
P, which, when positive, indicates a flow of electric energy from the MHD
machine into the source Vo:

P. = 1 Vo. (12.2.28)

We also define the mechanical power out P,, which represents power flow
from the MHD machine into the velocity source v0:

P, = Apwdv o . (12.2.29)
For the range of velocities

vo >
Bw

__~II~·_
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we have
P, > 0, P, < 0

and the device is a generator; that is, mechanical power input is in part
converted to electric power. For the velocity range

0< <vo<
Bw

we have
P. < 0, Pm > 0

and the device is a pump. Electric power input is converted in part to
mechanical power. For the velocity range

Vo < 0,

Pe < 0, Pm < 0;

that is, both mechanical and electrical power are into the MHD machine.
All of this input power is dissipated in the internal resistance of the machine.
In this region the machine acts as an electromechanical brake because electric

V0

Fig. 12.2.6 Terminal characteristics of an MHD conduction-type machine with constant
terminal voltage.
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power is put in, and the only electromechanical result is to retard the fluid
flow.

The properties of the MHD machine, as indicated by the curves of Fig.
12.2.6, can be interpreted in terms of the equivalent circuit of Fig. 12.2.5. We
substitute (12.2.24) into (12.2.29) to find that the mechanical output power is
expressible as

P, = -I(voBw). (12.2.30)

Reference to Fig. 12.2.5 shows that this is the power input to the battery that
represents the speed voltage. Thus, when the battery (voBw) absorbs power,
energy is being supplied to the velocity source by the MHD machine. When
the battery (voBw) supplies power, energy is being supplied to the external
voltage source by the MHD machine. When the battery (voBw) supplies
power, energy is being extracted from the velocity source. Thus, when the
two batteries of Fig. 12.2.5 have opposing polarities, energy can flow from
one battery to the other and the machine can operate as a pump or a generator,
the operation being determined by the relative values of the two battery
voltages. When the polarities of both batteries are in the same direction
(vo < 0 in Fig. 12.2.5), the two batteries supply energy to the resistance Ri,
and the MHD machine acts as a sink for both electrical and mechanical
energy. This is operation as a brake.

This analysis has been done for a particular set of terminal constraints.
Essentially the same techniques can be used for other constraints. It is worth-
while to point out that (12.2.24) indicates that if the machine is constrained
mechanically by a constant pressure source the electrical output will be at
constant current.

The analysis just completed provides the basic model used in any examina-
tion of the electromechanical coupling process in conduction-type MHD
devices, regardless of whether they are pumps or generators and whether the
working fluid is a liquid or gas. The model and its consequences should be
compared with those of commutator machines (Section 6.4.1) and of homo-
polar machines (Section 6.4.2). The similarities are evident and the opportunity
of using the results of the analysis of one device for interpreting the behavior
of another will broaden our understanding of electromechanical interactions
of this kind.

An alternative method of achieving electromechanical coupling between
an electrical system and a conducting fluid is to use a system that is analogous
to the squirrel-cage induction machine analyzed in Section 4.1.6b. We shall
not analyze this type of system here, but the analysis is a straightforward
extension of concepts and techniques already presented. The system consists
basically of a channel of flowing conducting fluid that is subjected to a
transverse magnetic field in the form of a wave traveling in the direction of

_~__ ___II _______
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flow. This wave is most often established by a distributed polyphase winding
(Sections 4.1.4 and 4.1.7). When the wave of magnetic field travels faster
than the fluid, the fluid is accelerated by the field and pumping action results.
When the fluid travels faster than the magnetic field wave, the fluid is
decelerated and electric power is generated. In the analysis of an induction
machine magnetic diffusion and skin effect are important (Section 7.1.4).

Both conduction- and induction-type MHD machines are used for
pumping liquid metals*; they are proposed for power generation with liquid
metalst and used to accelerate ionized gases for space propulsion systems";
both are proposed for power generation with ionized gases,§ although the
conduction-type machine appears more attractive by far for this purpose.

12.2.1b Dynamic Operation

We now consider the kinds of phenomena that can result from electro-
mechanical coupling with an incompressible fluid of time-varying velocity.
We start by considering the fluid dynamic behavior of a simple example,
which will then be the basis for a study of electromechanical transient effects.

The configuration to be studied is shown in Fig. 12.2.7. The system con-
sists of a rigid tube of rectangular cross section bent into the form of a U.
The depth d of the tube is small compared with the radius of the bends. The
tube is filled with an incompressible inviscid fluid to a length I measured
along the center of the tube. The two surfaces are open to atmospheric
pressure p, and gravity acts downward as shown.

It is clear that for static equilibrium the two surfaces of the fluid are at the
same height. The displacement of the two surfaces from the equilibrium
positions are designated x, and xb.

To study the dynamic behavior of this system we displace the fluid from
equilibrium, release it from rest, and study the ensuing fluid motions.

The equations for solving this problem express conservation of mass and
force equilibrium. Conservation of mass (12.1.31) used with the irrotational
flow condition (12.2.1) and the fact that the channel has constant cross-
sectional area leads to the conclusion that the flow velocity is uniform
across the channel. (Here we ignore effects due to the channel curvature.)

* L. R. Blake, "Conduction and Induction Pumps for Liquid Metals," Proc. Inst. of Elec
Engrs. (London), 104A, 49 (1957).
t D. G. Elliott, "Direct-Current Liquid Metal MHD Power Generation," AIAA J.,
627-634 (1966). M. Petrick and K. V. Lee, "Performance Characteristics of a Liquid Metal
MHD Generator," Intl. Symp. MHD Elec. Power Gen., Vol 2, pp. 953-965, Paris, July
1964.
1 E. L. Resler and W. R. Sears, "The Prospects for Magnetohydrodynamics," J. Aerospace
Sci., 25, No. 4, 235-245 (April 1958).
§ H. H. Woodson, "Magnetohydrodynamic AC Power Generation," AIEE Pacific Energy
Conversion Conf. Proc., pp. 30-1-30-2, San Francisco, 1964.
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Po

Fig. 12.2.7 Configuration for transient flow problem.

Furthermore, the displacements of the two surfaces are equal

zT = xb. (12.2.31)

The form of the momentum equation that is most useful for this example is
(12.2.5) with F, = 0.

P •=V - + p - +u , (12.2.32)
at 2 2

where U is the gravitational potential. We now do a line integration of
(12.2.32) from the surface at (a) to the surface at (b) along the center of the
tube to obtain

fp avdl =b -V + p + U) di (12.2.33a)

pl = -2pgxa. (12.2.33b)
at

This result could have been obtained by using (12.2.10), a fact that is not
surprising because the steps leading from (12.2.32) to (12.2.33) parallel those
used in Section 12.2.

The velocity v is given by

v dt=
dt

~_·ll~·llll~lll^-Y·~LI~···~-·I~C~ --
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thus we rewrite (12.2.33) as

I - + 2gx, = 0, (12.2.34)

which is a convenient expression for the surface displacement xa. It shows
that the dynamics are those of an undamped second-order system.

We now displace the fluid surface at (a) to the position

Xa(O) = Xo (12.2.35)
and release it from rest

dx
a (0) = 0. (12.2.36)

dt

The solution of (12.2.34) with the initial conditions of (12.2.35) and (12.2.36) is

Xa(t) = ul(t)X, cos wt, (12.2.37)

where u-_(t) is the unit step and the frequency w is given by

S= () (12.2.38)

Note that this lossless, fluid-mechanical system has the basic property of a
simple pendulum in that the natural frequency depends only on the acceler-
ation of gravity and the length of fluid in the flow direction and is independent
of the mass density of the fluid.

We now couple electromechanically to the system of Fig. 12.2.7 with an
MHD machine of the kind analyzed in Section 12.2.1a placed in the U tube
as shown in Fig. 12.2.8. The total length of fluid between the surfaces at (a)
and (b) is still I and the length of the MHD machine in the flow direction is 11.
The flux density B is uniform over the length of the MHD machine and is
again produced by a system not shown. As in Section 12.2.1a, we neglect the
magnetic field due to current in the fluid as well as the end and edge effects.
The terminals of the MHD machine are loaded with a resistance R.

In this analysis we are interested in the fluid dynamical transient that will
usually be much slower than purely electrical transients whose time constant
depends on the inductance of the electrode circuit. Thus we neglect the
inductance of the electrode circuit and the electric terminal relation is obtained
from (12.2.21) by setting

V = IR. (12.2.39)

The resulting relation between current and velocity is

vBw
I = , (12.2.40)

R, + R'
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Fig. 12.2.8 Transient-flow problem with electromechanical coupling.

where the internal resistance is
w

R i -
olld

and a is the electrical conductivity of the fluid.
The addition of the electrical force term to the momentum equation

(12.2.32) yields
ap- -vV + p + U• + J x B. (12.2.41)

Integration of this expression between the two fluid surfaces in the manner of
(12.2.33) yields

av IB
pl = -2pggx - _. (12.2.42)

at d

Note that the last term on the right is simply the pressure rise through the
MHD machine due to the electromagnetic force density (12.2.24).

Substitution of (12.2.40) and v = dx/Idt into (12.2.42) yields the differential
equation in xa

d 2z B2w dad x + 2 d + 2pggx = 0. (12.2.43)
dt2 d(Ri + R) dt

12.2.1
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Comparison of (12.2.43) with (12.2.34) shows that the electromechanical
coupling with a resistive load has added a damping term to the differential
equation. This is easily understandable in terms of the analysis of the MHD
machine in Section 12.2.1a. The fluid motion produces a voltage proportional
to speed, a resistive load on this voltage produces a current proportional to
speed, and the current in the fluid interacts with the applied flux density to
produce a retarding force proportional to speed. Thus the electrical force
appears as a damping term in the differential equation.

To consider the kind of behavior that can result in a real system of this
kind we assume that the fluid is mercury, which has the following constants

p = 13,600 kg/m s , a = 106 mhos/m.

The system dimensions are chosen to be

1 = 1 m, 11 = 0.1 m,

w = 0.02 m, d = 0.01 m.

We set the load resistance R equal to the internal resistance Ri

R = R -= 2 x 10-5 Q.

For these given constants the differential equation (12.2.43) reduces to

dt2 + 3.68B dx. + 19.6x. = 0. (12.2.44)
dt d t

When the fluid is released from rest with the initial conditions of (12.2.35) and
(12.2.36), the resulting transients in fluid position and electrode current are
shown in Fig. 12.2.9. It is clear that with attainable flux densities the electro-
mechanical coupling force can provide significant damping for the system.*

Some properties of the curves of Fig. 12.2.9 are worth noting. First, for
very small time (t < 0.1 sec) the response in fluid position is essentially
unaffected by the force of electric origin. This occurs because the initial
velocity is zero and it takes velocity to generate voltage and drive current.
Thus the initial increase in velocity is independent of the value of flux
density and the initial current buildup is proportional to flux density.

The resistive load on the electrodes of the MHD machine in Fig. 12.2.8 can
be replaced by an electrical source and the fluid displacement can be driven
electrically. In such a case, when the fluid motion is of interest, (12.2.21) and
(12.2.42) are adequate for the study.

* An experiment to demonstrate this effect is complicated by the fact that the contact
resistance between the liquid metal and the electrodes is likely to be appreciable.

__ ___
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Fig. 12.2.9 Transient response of MHD-damped system: (a) fluid position; (b) electrode
current.

12.2.2 Coupling with Flow in a Variable-Area Channel

To establish some insight into the properties of potential flow in two
dimensions, consider the flow around a corner in the configuration of Fig.
12.2.10. The fluid container has constant depth in the x,-direction and the
fluid is incompressible and inviscid. There are no electrical forces, and we
neglect gravity effects (assume gravity to act in the x8-direction).

For potential flow the velocity is given by (12.2.2) as v = -- V and the
velocity potential 0 satisfies Laplace's equation (V2

0 = 0). The boundary

___ __ ~L__I_
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condition is that the normal component of velocity must be zero along the
rigid surfaces. The solution of Laplace's equation which satisfies these
boundary conditions is

12a

where 2v, is the speed of the fluid at xz = z2 = a. The velocity is thus given by

v = ip•2 v, L - i21/2 vo X (12.2.46)
a a

Equipotential lines and streamlines are shown in Fig. 12.2.10. This solution
is valid, even if vo is time-varying.

We now restrict our attention to a steady-flow problem (vo = constant)
and find that Bernoulli's equation (12.2.11) yields

apv2 + p = constant. (12.2.47)

We note from (12.2.46) that at xz = x, = 0 the velocity v = 0. Because the
velocity is zero, this is called a stagnationpoint. If we designate the pressure
at the stagnation point as Po, (12.2.47) becomes

½pv2 + p = Po. (12.2.48)

Thus with a knowledge of the stagnation point pressure and the velocity
distribution we can find the pressure at any other point in the fluid. The use of

a

Fig. 12.2.10 Example of potential flow.
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Fig. 12.2.11 MHD conduction machine with variable area.

(12.2.46) in (12.2.48) yields for the pressure at point (xi, x 2)

P = Po - P (x,1 + Xz'). (12.2.49)

From this result we conclude that in a flowing incompressible fluid the highest
pressure occurs at the stagnation point. Moreover, for a given flow the
higher the local fluid speed, the lower the local pressure.*

This example indicates that the pressure can be changed by changing the
velocity and vice versa. Variations of velocity are obtained by varying the
cross-sectional area of the fluid flow. We now do an example of an MHD
interaction with a two-dimensional fluid flow in which the geometry of the
channel can be adjusted to vary the relation between input pressure and
velocity and output pressure and velocity. Such freedom is desirable in many
MHD applications. Here it allows us to extend the basic ideas introduced in
Section 12.2.1a to a case in which the fluid is accelerating but the flow is
steady (alat = 0).

The system to be considered is the conduction machine shown schemati-
cally in Fig. 12.2.11. The channel forms a segment of a cylinder. The inlet is
at radius r = a and the outlet is at radius r = b. The insulating walls
perpendicular to the z-direction are separated by a distance d. The electrodes
are in radial planes separated by the angle 0o. We use a cylindrical coordinate
system r, 0, z, defined in Fig. 12.2.11. There is an applied flux density B in

* Even though (12.2.49) indicates that the pressure p can go negative, in fact it cannot. As
long as we use an incompressible model, the pressure appears in only one place in the
equations of motion, and they remain unaltered if an arbitrary constant is added to (or
subtracted from) p. Other effects, such as compressibility, depend on an equation of state
that is sensitive to the absolute magnitude of the pressure. If these effects are included, a
negative pressure is not physically possible.
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the z-direction. The electrodes are connected to electrical terminals at which
the voltage V and current I are defined.

The velocity at the inlet (r = a) and the velocity at the outlet (r = b) are
assumed to be radial and constant in magnitude. We assume solutions with
cylindrical symmetry. These solutions are quite accurate, provided the angle
0o is reasonably small. Again the magnetic field generated by current in the
fluid is neglected (low magnetic Reynolds number).

As already assumed, the fluid is incompressible and inviscid with electrical
conductivity a and permeability 0o.The velocity is radial

v = irVr (12.2.50)

and the electric field intensity and current density are azimuthal

E = ioEo, (12.2.51)
J = i0Jo. (12.2.52)

We have already specified that the total flux density is

B = izB,, (12.2.53)
where B, is a constant.

We first assume that at the inlet (r = a) the radial component of velocity is

v'= 0a. (12.2.54)

Next, conservation of mass for incompressible flow requires that

v. n da = 0. (12.2.55)

The value of vr at any radius r follows as

Vr = a va. (12.2.56)
r

Steady-state operation yields V x E = 0 and the z-component of V x E =
0 [assuming that E takes the form of (12.2.51)] is

I O(rEo)=0. (12.2.57)
r Or

This yields the result that

E0 = -, (12.2.58)
r

where A is a constant to be determined from the boundary conditions. To
evaluate the constant A, the definition of the terminal voltage

- Eor dO = V (12.2.59)
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is used to obtain
V

E =- (12.2.60)
rO,

Substitution of (12.2.53), (12.2.56), and (12.2.60) into the 0-component of
Ohm's law for a moving, conducting medium (12.2.18) yields

Jo = -= +r v°B,. (12.2.61)

Note that this expression satisfies V - J = 0.
A relation between current density and terminal current can be obtained

from the expression

I = fJod dr. (12.2.62)

Performance of this integration yields

IR = - V + a0ovB,, (12.2.63)

where we have defined the internal resistance Ri as

Ri = (12.2.64)
ad In (b/a)

Note the similarity between (12.2.63) and (12.2.21) for the simpler geometry
in Fig. 12.2.3.

The radial component of the momentum equation (12.2.4) for steady-state
conditions is

pv, = - + JeOB. (12.2.65)
ar ar

Multiplication of the expression by dr, integration from r = a to r = b, and
use of (12.2.56) and (12.2.62) yields

p 2[() 1- = -Ap 1Bd (12.2.66)

where the pressure rise Ap is defined as

Ap = p(b) - p(a). (12.2.67)

Note the similarity between (12.2.66) and (12.2.24) for the constant-area
channel. The difference lies in the first term on the left of (12.2.66) which
results from the changing area and therefore changing velocity in the channel
of Fig. 12.2.11.

12.2.2
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Equation 12.2.66 could have been obtained from Bernoulli's equation
(12.2.11); in a simple case like this, however, it is more informative to obtain
the result from first principles.

To study some of the properties of the system with varying area consider
first the case in which the electrical terminals are open-circuited. The terminal
voltage, as obtained from (12.2.63) is

V = aOovaB, (12.2.68)

and the pressure rise obtained from (12.2.66) is

Ap = PVa 1 _ (a . (12.2.69)

Because a < b, this pressure rise is positive, which indicates that the outlet
pressure is higher than the inlet pressure. This results because the fluid
velocity decreases as r increases and this fluid deceleration must be balanced
by a pressure gradient as indicated by the momentum equation (12.2.65).
Thus the variable area channel by itself acts as a kind of "fluid transformer"
that can increase pressure as it decreases velocity or vice versa.

The electrical terminal relation (12.2.63) for the machine with variable area
(Fig. 12.2.11) has the same form as the electrical terminal relation (12.2.21)
for the machine with constant area (Fig. 12.2.3). Thus, if the inlet velocity va
is the independent mechanical variable, the analysis of the electric terminal
behavior is exactly the same as that of the constant-area machine; that is, from
an electrical point of view the machine appears to have an open-circuit voltage
(aOvaBz) in series with an internal resistance R, (12.2.64), as illustrated in
Fig. 12.2.12. This equivalent circuit can be connected to any combination of
active and passive loads, and the electrical behavior can be predicted correctly
within the limitations of the assumptions made in arriving at the model.

To study the energy conversion properties of the variable-area machine we
must generalize the concept of mechanical input power that was used in
(12.2.29) for the constant-area machine. No longer is the mechanical input
power simply equal to the pressure difference times the volume flow rate of
fluid because the difference in inlet and outlet velocities indicates that there is

1 2.d In(b/a)

Fig. 12.2.12 Electric equivalent circuit for a variable-area MHD machine.
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a net transport of kinetic energy into or out of the volume of the channel by
the fluid. To illustrate this concept consider the system operating with the
electrical terminals open-circuited. There is clearly no electrical output
power and no 12R, losses in the fluid. Moreover, the fluid is inviscid, so there
can be no mechanical losses. Thus we expect the mechanical input power to
be zero, although there is a nonzero pressure difference between inlet and
outlet of the channel.

To determine the mechanical energy interchange between the MHD device
and the energy source which makes the fluid flow through the device we use
the conservation of energy which states, in general,

total power input] Frate of increase of 1
to channel volume] Lenergy stored in volume] (12.2.70)

For the steady-state problem being considered the energy stored in the
volume is constant and the right side of (12.2.70) is zero. We thus define the
mechanical output power from the channel as Pm and the power converted to
electrical form as P,, and write (12.2.70) for conservation of mechanical
energy* as

-P'r - P,, = 0. (12.2.71)

For open-circuit conditions the electromechanical power P,m is zero and

Pm = 0. (12.2.72)

To calculate Po, which has been defined as the work done by the fluid in the
channel on the fluid mechanical source, we must specify how work is done on
the fluid in the channel and how energy is stored and transported by the fluid.

At a surface of a fluid (this can be an imaginary surface in a fluid) with
outward directed normal vector n, as illustrated in Fig. 12.2.13, there will be a
pressure force on the fluid enclosed by the surface of magnitudep and directed
opposite to the normal vector (-pn) [see (12.1.37)]. If the fluid is moving
with velocity v at the surface, the rate at which the pressure force (-pn da)
does work on the fluid inside the volume V is

[power input fromes - pn. v da. (12.2.73)
pressure forces

A fluid can store kinetic energy with a density Ipv2. At each point along the
surface of Fig. 12.2.13 fluid flow across the surface will transport kinetic
energy into or out of the volume V. The volume of fluid crossing the surface

* Even though electrical losses in the fluid (12R,) occur within the volume of the channel,
they are not included in this energy expression. This is possible here because these losses do
not affect the mechanical properties of an incompressible, inviscid fluid. When we consider
gaseous conductors in Chapter 13, the electrical losses must be included because they will
affect the mechanical properties of the conducting fluid.

___·_ _I__·^
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Fig. 12.2.13 Geometry for writing conservation of energy for a fluid.

element da in unit time is v * n da. Thus the total kinetic energy transported
out of the volume in unit time is

power output from kinetic] =~ ~2V *n da. (12.2.74)
energy transport

For an incompressible inviscid fluid (12.2.73) and (12.2.74) represent the
only mechanisms for interchanging mechanical energy with a fluid; thus the
mechanical output power P, defined in (12.2.71) is given by

P. = pn. v da + spv'v . n da. (12.2.75)

To apply (12.2.75) to the variable-area channel of Fig. 12.2,11 we must
define the surface that encloses the fluid in the channel. This surface consists
of the four channel walls and the two concentric cylindrical surfaces at r = a
and r = b. The velocity is nonzero only along the last two surfaces; con-
sequently, (12.2.75) integrates to

Pm = -p(a)v,(a)aOod + p(b)v,(b)bOod

-- pvyr(a)aOod + ½pv.(b)bOod. (12.2.76)

The assumption that ov(a) = va (12.2.54) and the use of (12.2.56) to write

v,(b) = - va (12.2.77)
b

allows us to write (12.2.76) in the simplified form

P, = aOodva[AP - pu 1- )21 , (12.2.78)

where the pressure rise Ap has been defined in (12.2.67) as Ap = p(b) - p(a).
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To apply (12.2.78) we first note that for the open-circuit condition I = 0,
and (12.2.66) yields

Apo = - . (12.2.79)

Substitution of this result into (12.2.78) yields for open-circuit conditions

Pm= 0.

This is in agreement with our intuitive physical prediction made at the start
of this development. Next, for any arbitrary load I 0 (12.2.66) yields

-Ap = p (- E -- . . (12.2.80)

Substitution of this result into (12.2.78) and simplification yield

Pm = -aOovaBz. (12.2.81)

From (12.2.71) the power converted electromechanically is

Pm = -Pm = aO0vfBlI. (12.2.82)

Reference to the equivalent circuit of Fig. 12.2.12 shows that this converted
power is simply the power supplied to the electric circuit by the battery
representing the open-circuit voltage.

This interpretation leads to the conclusion that for conversion of energy the
variable-area machine has exactly the same properties as the constant-area
machine analyzed earlier. The only difference arises when we are interested
in the details of the pressure and velocity distributions and in the nature of the
fluid mechanical source that provides the fluid flow through the machine.
As we shall see in Chapter 13, however, these are essential considerations if
the velocity is large enough (compared with that of sound) to make the
effects of compressibility important.

12.2.3 Alfv6n Waves

So far in the treatment of electromechanical coupling with incompressible
inviscid fluids we have considered problems in which there has been gross
motion of the fluid. All of these examples have been analyzed by using
potential flow. In this section we consider electromechanical coupling that
results in no gross motion of the fluid but rather involves the propagation of
a signal through a fluid. Moreover, the fluid velocity has a finite curl and a
potential flow model is inappropriate. Our discussion is pertinent to an
understanding of MHD transient phenomena.

As discussed in Section 12.1.4, an inviscid, incompressible fluid can, by
itself, support no shear stresses; but when such a fluid with very high

__ilW_ -I·I1I
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electrical conductivity is immersed in a magnetic field the magnetic field
provides shear stiffness such that transverse waves, called Alfv6n waves and
very much akin to the shear waves in elastic media, can be propagated. They
play an essential role in determining the dynamics of a highly conducting
liquid or gas (plasma) interacting with a magnetic field.

To introduce the essential features of Alfv6n waves we use a rectangular
system in which variables are functions of only one dimension. It is difficult
to realize physically the boundary conditions necessary for this model. Thus,
after the ideas are introduced, we extend the example to cylindrical geometry,
where all boundary conditions can be imposed realistically.

The magnetohydrodynamic system is shown in Fig. 12.2.14. An incompres-
sible, inviscid, highly conducting (a -- co) fluid is contained between rigid
parallel walls. An external magnet is used to impose a magnetic flux density
Bo in the x1-direction. It is the effect of this flux density on the motions of the
fluid transverse to the xl-axis that is of interest.

Plate for
move i
x2 dire

rced
n th
ectic

X3

Rigid plate

Fig. 12.2.14 Fluid contained between rigid parallel plates and immersed in a magnetic
induction Bo. Motions of the fluid are induced by transverse motions of the left-hand plate,
which, like the fluid, is assumed to be highly conducting.
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X2

4'

ents

1

Fig. 12.2.15 End view of the loop abcd shown in Fig. 12.2.14. The initial loop formed by
conducting fluid and the plate links zero flux ;.. To conserve the flux, density B remains
tangential to the loop with the additional magnetic flux density B2 created by an induced
current.

Suppose that in the absence of a magnetic field the rigid plate is set in
motion in the x2-direction. Because the fluid is inviscid, there is no shearing
stress imposed on the fluid and the plate will transmit no motion to the fluid.
In fact, if any sheet of fluid perpendicular to the x1-axis is set into transverse
motion, the adjacent sheets of fluid remain unaffected because of the lack of
shearing stresses.

Now consider the effect of imposing a magnetic field. The fluid is highly
conducting, and this means that the electric field in the frame of the fluid is
essentially zero. The law of induction can be written for a contour C attached
to the fluid particles:

E'dl= d B-n da - (12.2.83)

Ec dt is dt'

where E' is the electric field measured in the frame of the fluid.* Because
the first integral is zero, the flux A linked by a conduction path always
made up of the same fluid particles remains constant.

This is an important fact for the situation shown in Fig. 12.2.14, as can be
seen by considering the conduction path abcd intersecting the fluid and the
edge of the rigid plate at xz = 0. Initially the surface enclosed by this path is
in the z2-X, plane, hence links no flux (A = 0). When the plate is forced to
move in the xz-direction this surface, which is always made up of the same
material particles, moves to a'bcd'. Because the surface is tilted, there is now
a flux from Bo that contributes to 2. Because A must remain zero, however,
there is a current induced around the loop in such a direction that it cancels
the flux contributed by Bo. There is then an addition to the magnetic field
(induced by this current) along the x,-axis (Fig. 12.2.15) that makes the net
* See (1.1.23), Table 1.2, Appendix G.

___·
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magnetic field remain tangential to the surface of the deformed loop. This is
necessary if A is to remain zero.

The current, returning along the path cb in the fluid flows transverse to the
field Bo; hence there is a magnetic force on the fluid (J x Boil) in the x,-
direction. The result of moving the highly conducting plate in the x2-direction
is a motion of the fluid adjacent to the plate in the same direction. The
motion of the plate creates a magnetic shearing stress on the fluid. This stress
is transmitted through the fluid in the xl-direction because the magnetic force
sets the fluid in the plane of be into motion, and this sheet of fluid now plays
the role of the plate in inducing motions in the neighboring sheets of fluid.

In our arguments we have assumed that motions of the fluid are the same
at all points in a given x, -x, plane. To provide an analytical picture of the
dynamics consistent with this assumption it is assumed that all variables are
independent of x2 and x,. As an immediate consequence of this assumption,
the condition that V - B = 0 requires that Bo be independent of x1. If, in
addition, Bo is imposed by an external magnet driven by a constant current,
it follows that B, = Bo = constant, regardless of the fluid motions. By similar
reasoning the incompressible nature of the fluid (V - v = 0), together with the
rigid walls that do not permit flow along the x,-axis, require that v, = 0
everywhere in the fluid. Hence both the fluid motions and additions to the
magnetic flux density occur transverse to the xx-axis.

From the discussion that has been given it is clear that three essential
ingredients in the fluid motions are of interest here. First, a mathematical
model must account for the law of induction. In particular, since the magnetic
field is induced in the x2-direction, we write the x2-component of the induction
equation

8E3 aB2aE =-a(12.2.84)

The second important effect comes from the high conductivity of the fluid.
In order that the conduction current may remain finite in the limit in which
the conductivity a becomes large, we must require that E' = 0. This in turn
means that E = -v x B, and it is the x3-component of this equation that is
of interest to us:

E3 = V2Bo. (12.2.85)

Substitution of this expression for E, into (12.2.84) gives an equation that

expresses the effect of the fluid deformation on the magnetic field.

B, -B2 (12.2.86)a1 • at
Note that if we define a transverse particle displacement in the fluid such that

v2 = a[/at (12.2.86) simply requires that the magnetic flux density remain
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tangential to the deformed surface of fluid initially in a given xx-xa plane.
Equation 12.2.86 shows that the lines of magnetic field intensity are deformed
as though they were "frozen" to the particles of fluid (see Fig. 12.2.15).

The third input to our analytical description comes from the effect of the
magnetic field on the fluid motions. Because the fluid moves in the z,-direction,
we write the xa-component of the force equation (12.1.21)

av) 8T"1 B o aB,
P =T 21  Bo (12.2.87)

8t 8ax1  Po 8a
Note that the absence of a velocity component v, and the one-dimensional
character of the motions under consideration eliminate the spatial derivatives
from the substantial derivative (the first term) in this expression. The only
component of the Maxwell stress tensor* that enters on the right is T'2
because variables do not depend on z, or x, and we have made use of the fact
that Bo is a constant in writing Eq. 12.2.87.

The last two equations can be used to write an expression for either B2 or
v2 ; for example, we eliminate B2 between the time derivative of (12.2.87) and
the space derivative of (12.2.86) to obtain

a2v2  Bo a~8v2a2 V2 oP B x2 ' (12.2.88)

where (Bo2
ab BoP

This is the wave equation, considered in some detail in Chapters 9 and 10.
The velocity a, with which waves propagate in the x,-direction is called the
Alfvyn velocity.t

To develop further a physical feel for the nature of an Alfv6n wave,
consider the propagation in the positive ax-direction of the pulse illustrated in
Fig. 12.2.16. The pulse, as drawn, represents what happens along the xa-axis;
but, because in our model the variables are independent of xa and sa, the
figure applies to all elements having the same coordinate x1. With reference
to Fig. 12.2.16, we can easily show that the variables as sketched satisfy
(12.2.86) and (12.2.87) with J found by Ampire's law. Moreover, (12.2.88)
is satisfied when the waveforms maintain constant shape and propagate in the
ax-direction with the Alfv6n velocity ab.

We note from Fig. 12.2.16 that the force density J x B has an x-rcomponent
equal to J3 B, and that this force density is in the positive X,-direction in the
leading half of the wave and in the negative X,-direction in the trailing half of
the wave. Thus, as the wave propagates in the x1-direction, the fluid at the
* Table 8.1, Appendix G.t Alfv6n waves are named after the man who first recognized their significance for astro-
physics. See H. Alfv6n, Cosmical Electrodynamics, Oxford, 1950.
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Fig. 12.2.16 The variables associated with an Alfv6n wave.

leading edge is accelerated upward by the electrical force and at the trailing
edge the fluid is decelerated.

It is instructive to use the pulse of Fig. 12.2.16 to construct the curves of
Fig. 12.2.17 which show the displacement of the fluid particles that were
initially on the x1-axis. Fluid particles and magnetic flux lines are displaced in
the same way by the passage of the Alfv6n wave. For a highly conducting
(a -* oo) fluid the fluid particles and magnetic flux lines are "frozen"
together and any motion of the fluid causes a distortion of the flux lines.

(a) (b)

Fig. 12.2.17 Fluid displacement and flux-line distortion in an Alfv6n wave: (a) fluid
displacement; (b) magnetic flux line.

Xý1,
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2

(b)

Fig. 12.2.18 (a) Experimental arrangement for producing torsional Alfv6n waves in
highly conducting cylindrical container; (b) conduction paths represented as "spokes" in
adjacent wheels of perfectly conducting fluid.

It would be difficult to generate Alfv6n waves in the cartesian geometry of
Fig. 12.2.14 for two reasons. First, fluid motions in the x,-direction have
been assumed independent of x2 and this implies that container boundaries in
x-Zxa planes must not inhibit the velocity vs . Second, currents that flow along
the x3-axis must have a return path (V . J = 0), and this implies that con-
ducting walls are provided by the container in x1-x, planes. We can satisfy both
requirements by using the cylindrical container shown in Fig. 12.2.18. Here

· · · _I_~ I___ I
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we expect that Alfv6n waves will appear as torsional motions of the fluid
about the axis of the cylinder. These motions, like those just considered, are
transverse to the imposed magnetic field Bo (which has the same direction as
the axis of the cylinder).

Again it is helpful to think of the fluid as composed of sheets, as shown in
Fig. 12.2.18. Now the sheets take the form of wheels that can execute torsional
motions about the cylinder axis. Currents can flow radially outward along
"spokes" of a "wheel" through the outer cylinder wall, inward along another
"spoke," and finally complete the loop along the cylinder axis (Fig. 12.2.18).
In fact, these loops provide a simple picture of the electromechanical
mechanism responsible for the propagation of waves along the magnetic
field Bo.

Suppose that the first slice of fluid is forced to rotate to the positive angle yv
(Fig. 12.2.18b). The loop formed by the conducting path through the neighbor-
ing sheet initially links no flux. To conserve this condition in spite of the
rotation a current i is induced which tends to cancel the flux caused by Bo.
This current returns to the center through the neighboring sheet. In doing so
it produces a force density J x Bo which tends to rotate this second sheet in
the positive v-direction. Of course, as the second sheet rotates, a current
must flow around a loop through the third sheet to conserve the zero flux
condition in the second loop of Fig. 12.2.18. Hence the third sheet of fluid is
set into motion and the initial rotation propagates along the cylinder axis.
These arguments can be repeated for motions that propagate in the opposite
direction. The waves have no polarity and can propagate in either direction
along the lines of magnetic field Bo The propagation is not instantaneous
because each sheet has a finite mass and time is required to set the fluid in
motion

The magnetic field has the same effect on the fluid as if the fluid sheets
were interconnected by taut springs (Fig. 12.2.19). Wave propagation occurs

f

Fig. 12.2.19 Side view of the circular sheets of fluid in Fig. 12.2.18 showing equivalent
interconnecting springs under the tensionf.
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Fig. 12.2.20 Cylindrical geometry for the study of Alfv6n waves.

very much as it does on a string (Section 9.2.). In the string the wave velocity
was proportional to the square root of the tension f*. Here the tension is
apparently proportional to B2, as can be seen by comparing (12.2.88) and
(9.2.4). This would be expected from a simple experiment: hold one sheet
fixed and twist the next sheet and there is a restoring torque proportional tof.
With the magnetic field the restoring torque is caused by J x Bo, but since J
is induced in proportion to Bo this magnetic restoring torque is proportional
to Bo, . Hence we can think of Bo2 as producing a magnetic tension in a
perfectly conducting fluid.

To be precise about the fluid velocity and electrical current distribution,
we now consider a specific analytical example. The system, illustrated in
Fig. 12.2.20, consists of a rigid, cylindrical container made of highly con-
ducting material, filled with a highly conducting fluid, and immersed in an
equilibrium axial flux density Bo produced externally. The ends of the
cylinder are also rigid and may be insulators or conductors, depending on
the boundary conditions desired. The fluid is modeled as incompressible and
inviscid with mass density p, permeability /to, and high electrical conductivity
(a -- oo). The fluid in the cylinder has axial length Iand radius R. We use the
cylindrical coordinate system illustrated in Fig. 12.2.20.

We specify that any drive will be applied at the ends and will have cylindrical
symmetry; that is, there will be no variation with the angle 0 and v =
ievo(r, z, t). In this case we can require that the relevant variables have only
the following components, defined in terms of the cylindrical coordinate
system (r, 0, z) in Fig. 12.2.20.

B = iB. + ioBo, (12.2.89)

J = if, + izJs, (12.2.90)
E = i,.Er + iE,. (12.2.91)

* See Table 9.2, Appendix G.
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The variables v., Be, Jr, J,, Er, and E. can be functions of r, z, and time t.
To analyze this system we must write the necessary equations in cylindrical

coordinates by recognizing that (ala0) = 0. For the basic equations refer to
Table 1.2*, and for their forms in cylindrical coordinates refer to any
standard text on electromagnetic theory.t The use of the constituent relation
B = uH with Ampere's law (1.1.1)* in cylindrical coordinates yields

1 aBB
= Jr, (12.2.92)

P*o az

1 a(rBo) = J-. (12.2.93)
yor ar

We obtain from Faraday's law (1.1.5)

aE a (12.2.94)
az ar at

Ohm's law (12.2.18) yields

J,= o(Er + v&Bo), (12.2.95)

J, = aE, (12.2.96)

with Jr and J. related by the condition of conservation of charge (1.1.3)*

l 8 J,
1-(rJr) + _ = 0. (12.2.97)
rar az

The 0-component of the momentum equation (12.1.14) with F" = J x B is

8vo
P o -JrBo. (12.2.98)at

We now assume high conductivity (a - co), which, coupled with the fact
that J remains finite, reduces (12.2.95) and (12.2.96) to

Er = -v 0Bo, (12.2.99)

E, = 0. (12.2.100)

These expressions are used in 12.2.94 to write

B, vo - aB. (12.2.101)
az at

* See Table 1.2, Appendix G.
f See, for example, R. M. Fano, L. J. Chu, and R. B. Adler, Electromagnetic Fields,
Energy, andForces, Wiley, New York, 1960, p. 510.



Magnetic Fields and Incompressible Fluids

Equations 12.2.92, 12.2.98, and 12.2.101 are combined to obtain the wave
equation

a2v -= B a% (12.2.102)
at" Mop a?

This equation indicates that waves can propagate in the z-direction with the
Alfv6n velocity [see (12.2.88)].

a. P . (12.2.103)

Note that (12.2.102) has no derivatives with respect to the radius r although
the variables may be functions of r as indicated by (12.2.93) and (12.2.97).
Variations with r are determined by boundary conditions; for instance, the
general solution of (12.2.102) can be written in the separable form as

vo = A(r)f(z, t). (12.2.104)

The function A(r) is then set by boundary conditions and automatically
satisfies all the differential equations.

To consider a specific example of boundary conditions we assume that the
end of the container at z = 0 is rigid, fixed, and made of insulating material
(a -- 0). The end at z = I is highly conducting (a -- oo) and is rotated about
its axis with a velocity

V = Re (Dre'it). (12.2.105)

These constraints impose the following boundary conditions:

at z = 0, J. = 0 (12.2.106)

at z = 1, ve = Re (Drei'1). (12.2.107)

This last boundary condition reflects the fact that there can be no slip between
the perfectly conducting moving wall and the adjacent fluid because of the
magnetic field; that is, the electric field must remain continuous across this
boundary. Since E = -v x B and the normal B is continuous across the
boundary, it follows that the fluid velocity must also be continuous.

The solution for vo can now be assumed to have the form

vo = Re [A(r)be(z) ei't]. (12.2.108)

Substitution of this assumed solution into (12.2.102) yields the differential
equation

d-- = -k2 0o, (12.2.109)
dz2

where

k Co.a.

_yl I_ · I^_
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The solution of this equation is, in general,

i0 = C1 cos kz + C, sin kz. (12.2.110)

Imposing the boundary condition at z = 1, (12.2.107) yields

Or = A(r)(C1 cos kl + C2 sin ki). (12.2.111)

To maintain A(r) nondimensional as indicated by (12.2.108), while satis-
fying this last equation for all values of r, we set

A(r) = - (12.2.112)
R

and rewrite (12.2.111) as

OR = C1 cos kl + C2 sin kl. (12.2.113)

To apply the boundary condition at z = 0 we need to find an expression for
J,. We accomplish this by first substituting (12.2.108) into (12.2.101) to
obtain

B = Re [BoA(r) ! ee"t . (12.2.114)
at dz

If we assume that
B0 = Re [A(r)Ae(z)e••t], (12.2.115)

then, using (12.2.114), we obtain

jwco(z ) = B. di, (12.2.116)
dz

which, by using (12.2.110), yields

io(z) = Bk (--C 1 sin kz + C2 cos kz). (12.2.117)

Now we use (12.2.93) to evaluate J, as

J, = Re 2k (-C sin kz + C2 cos kz)e "  . (12.2.118)

The boundary condition at z = 0 (12.2.106) now requires

C2 = 0. (12.2.119)

We use this result with (12.2.113) to find

IOR
C , = • (12.2.120)

cos kl

i
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The resulting solutions are

vo = Re r cos kz ei , (12.2.121)
cos kl I

Be = Re erB, sin It  t  (12.2.122)

J Re 2Bk sin kz e ' , (12.2.123)
owPo cos kl

J, = Re j(p% r cos kz e "). (12.2.124)
(\ BO cos kl

Study of these solutions indicates that there are standing, torsional waves
in the system. The fluid motion is azimuthal and the flux line distortion is
azimuthal. The details of the phenomena involved in the wave propagation
are as described in connection with Fig. 12.2.18. Now, however, we see that
the current loops are distributed throughout the fluid.

Because Alfv6n waves are reflected from both ends of the container, the
system exhibits an infinite number of resonances whose frequencies are
defined by

cos kl = 0. (12.2.125)

The boundary condition at the insulated end of the cylinder (12.2.106) is
essentially a free end condition. This is true because no current can flow in
the insulator and no electrical forces are available at the boundary to perturb
the fluid motion. Also, because the fluid is inviscid, there can be no tangential
mechanical force applied to the fluid by the end plate. At the perfectly con-
ducting end plate (z = 1) the fluid "sticks" to the end plate because of
electrical forces. A small radial current loop with one side in the end plate
and the other side in the fluid will keep the flux linking it at zero. This
produces the currents that interact with B, to allow no slippage of the fluid
at a perfectly conducting boundary that is perpendicular to the equilibrium
flux density.

To ascertain the kinds of numbers that would be involved in an experi-
mental system of this sort, consider a container with the dimensions

I = 0.1 m, R = 0.1 m.

Assume the fluid to be liquid sodium (sometimes used as a coorant for nuclear
reactors) which has a mass density, at 1000C, of

p = 930 kg/m3.

If we assume a flux density of
Bo = 1 Wb/m 2,

-IIIII~·PIL~LL·I~···1111111·-~·
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which is easily obtainable with iron-core electromagnets, we obtain an
Alfv6n velocity of

a, = 31 m/sec.

The lowest resonance frequency of this system is given from (12.2.125) by

21
which yields

wo= 490 rad/sec
or

f = 78 Hz.

From these results we can see that Alfv6n waves propagate at low velocities
in liquid metals and that for devices of reasonable size the resonance fre-
quencies also are low.

In our treatment of Alfv6n waves we have assumed that the electrical
conductivity of the fluid is infinite. In such a case we wonder how the flux
density Bo can exist in the fluid. The answer is simply that the conductivity is
large but finite, and in establishing the equilibrium conditions sufficient time
was allowed for the flux density Bo to be established by diffusion into the
fluid. In the analysis of the waves the assumption a - co means simply that
the diffusion time of the magnetic field through the fluid is much longer than
the time required for the wave to propagate through the fluid* (see Section
7.1).

We have introduced Alfvyn waves by using an incompressible fluid model.
These waves can also propagate in compressible, highly conducting fluids
such as gases. The analysis is essentially the same in both cases; however,
more complex waves are- possible in compressible fluids. Thus we must
exercise care to ensure that only Alfv6n waves are driven by a particular
excitation in a compressible fluid.

12.2.4 Ferrohydrodynamics

Attention has been confined so far in this section to coupling with fluids
that carry free currents. As pointed out in Section 8.5.2, magnetization forces
can also be the basis for interaction with liquids. Commonly found fluids
have no appreciable permeability. Ferromagnetic fluids, however, can be
synthesized by introducing a colloidal suspension of magnetizable particles
into a carrier fluid. Colloidal suspensions tend to settle out over long periods
of time, and in the presence of a magnetic field the magnetized particles tend

* For an example of the experimental conditions necessary see A. Jameson, "A Demon-
stration of Alfv6n Waves, I: Generation of Standing Waves," J.FluidMech., 19, 513-527
(August 1964).
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z

Fig. 12.2.21 A dish of magnetizable fluid is subjected to the magnetic field induced by
current L

to flocculate. Recent research efforts have led to the synthesis of colloidal
suspensions (e.g., submicron-sized ferrite particles in a carrier fluid of
kerosene), which are stable over indefinite periods of time.* We have no
intention of delving into this topic in depth here; rather we confine ourselves
to one simple example that illustrates this class of phenomena.

Although the ferrofluid is easily magnetizable, it can be made to be highly
insulating against electrical conduction. In a magnetic field system the
electric field is important because it determines the conduction current
(through Ohm's law). In the region occupied by a magnetic insulator the
conduction current is negligible and the equations for the magnetic field are
simply

V x H = 0, (12.2.126)

V. B = 0. (12.2.127)

These are the equations used to describe the magnetic field, even in a
dynamic situation. At any instant in time the magnetic field, at least insofar
as it is determined by the magnetized fluid, has the same distribution as if the
system were static.

As an illustration of the nature of the magnetization force consider the
experiment shown in Fig. 12.2.21. A constant current I is imposed along the
z-axis by means of a conductor. This conductor passes vertically through

* R. E. Rosensweig, "Magnetic Fluids," International Sci. Technol. 55, 48-66, 90 (July
1966).
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a dish containing the magnetic fluid. We wish to compute the static equilibrium
of the fluid that results after the current I has been turned on. This amounts
to determining the altitude h of the fluid interface above the bottom of the
dish. We can expect that, because a force density, -H - HVC1 , tends to pull
the fluid upward, the depth will be greatest where the magnetic field intensity
is greatest.

We assume that the magnetic field induced by the return current can be
ignored. Then, under the assumption of axial symmetry, Ampere's law
requires that the current I induce an azimuthally directed magnetic field
intensity H = io I 

(12.2.128)
2nr

This problem is relatively simple because the magnetizable fluid has no effect
on the distribution of H; that is, because the physical system is axially
symmetric, we can argue that the fluid deformations are also axially symmetric
and h = h(r). It is clear that (12.2.128) satisfies the field equations (12.2.126)
and (12.2.127) in the region occupied by the fluid, and because the interface
is axisymmetric it also satisfies the boundary conditions. The tangential
component of H is continuous and there is no normal component of B at the
liquid interface. Hence we know the magnetic field intensity at the outset,
and this makes finding h(r) straightforward.

The magnetic force acting on the fluid (from Section 8.5.2)* is

F= -- H HV + V( p - H - H. (12.2.129)

In the bulk of the liquid, /u is constant. Hence the force density can be written
as

F = -VV, t = - -H. (12.2.130)
2 ap

This is the form assumed in deriving Bernoulli's equation (12.2.11) which,
in the case of a static fluid, becomes

p + pgz - ý H H = constant. (12.2.131)
2 ap

Remember that this equation is valid in the bulk of the fluid. It can therefore
be used to relate the pressures and heights at the points (a) and (b) in
Fig. 12.2.21. These points are just beneath the interface, where pressures are
p. and Pb, respectively, and the altitudes are ha and hb. From (12.2.131)

Pa + pgha - 2 (Ha) = Pb + pgh, - ý ' (Hb) a. (12.2.132)
2 ap 2 ap

* See Table 8.1, Appendix G.
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Similar reasoning shows that the pressures Pa and V

niitsuncrnss the interfr rn nn~(Isd(I - "
respectively, are related by

PC = Pa. (12.2.133)

Here we have assumed that the density of the air
above the liquid can be ignored.

Now, it we could relate the pressures at adjacent -

points on opposite sides of the interface, we would ume element encloses the
have four equations that would make it possible interface between points c
to relate all four of the pressures pa, pb, p,, and p,. and b in Fig. 12.2.21.
At the interface there is a jump in y, and we must
be careful to include the effect of the first term in (12.2.129) [which was not
accounted for in (12.2.131)]. The stress tensor representation of the force
density is convenient for determining the jump in pressure at the interface
[see (8.5.41)].* A thin volume is shown in Fig. 12.2.22, as it encloses the
region of interface between points b and c. To make use of the stress tensor
in cartesian coordinates we erect a set of orthogonal coordinates (u, v, w)
at the interface, with w in the 0-direction. Force equilibrium then requires
that the sum of the surface forces balance

P[-P0-TL P{H)[s-P ( t-: (12.2.134)

Similarly, at the interface between points (d) and (a)

pd - = -(Ha)'[o - 1 - I]. (12.2.135)

Now addition of these last four equations eliminates the pressures and gives
an expression for the difference in surface elevation at points a and b as a
function of the magnetic field intensities.

pg(h, - hb) = (Po - Pu)[(Hb)2 - (Ha)2
]. (12.2.136)

Until now we have not specified the field intensity at points a and b. It has
been known all along, however, because of (12.2.128). In particular, if we
take the point a as being at r = R (which could be the outside radius of the
pan), (12.2.136) becomes an expression for the dependence of interface
altitude on the radius r.

, Ia /1 1.ff_
pg(hb - ha)= -(( o-- P) - . (12.2.137)

(27r)2 r R
This result is sketched in Fig. 12.2.23. We have assumed that the density of
the liquid is constant. This means that the total volume of the liquid must be

* Table 8.1, Appendix G.
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Fig. 12.2.23 Sketch of the liquid interface contour predicted by (12.2.137).

conserved, a fact that could be used to find the distance from a to the bottom
of the pan.

An experiment with essentially the same ingredients as this example is
shown in Fig. 12.2.24. In actuality, a significant magnetic saturation of the
liquid makes the electrically linear model used here (B = IH)only approxi-
mately correct. As we know from Chapters 3 and 8, energy methods can also
be used to calculate magnetization forces for electrically nonlinear systems,
and this is what is required to make a careful comparison of theory and
experiment.

Finally, it is worthwhile to observe that the magnetostriction force density
has no observable effect on the surface deformation. This will always be the
case as long as interest is confined to situations in which the fluid density
remains essentially constant.

12.3 ELECTRIC FIELD COUPLING WITH INCOMPRESSIBLE FLUIDS

There is a wide range of mechanisms by which an electric field can produce
a force on a fluid. In this section examples are used to illustrate two of the
most commonly encountered types of interaction.

12.3.1 Ion-Drag Phenomena

Electrical forces can be produced in highly insulating gases and liquids
by injecting charged particles and using an electric field to pull them through
the fluid. Here we assume that these charged particles are ions that might be
emitted by the corona discharge in the neighborhood of sharply pointed
electrodes placed at a high potential (several kilovolts). These ions move
through a liquid or gas under the influence of an applied electric field. Their
motion, however, is retarded by friction, and momentum is imparted to the
fluid. Therefore the ion-drag effect can be used to pump or accelerate the
fluid. Similarly, if the ion is transported by the fluid against the retarding
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Fig. 12.2.24 (a) A conductor passes along the axis of symmetry through a pan containing
the magnetizable liquid, I = 0. (b) The current Ihas been turned on. The result is a force
density -H •HVq that tends to lift the fluid upward, as predicted by (12.2.137). (Courtesy
of AVCO Corporation, Space Systems Division.)

I

Courtesy of Textron Corporation.  Used with permission.
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force of the electric field, energy can be transferred from the flow into an
electrical circuit. In this context the ion-drag phenomenon is the basis for a
gaseous Van de Graaff generator analogous to that discussed in Section 7.2.2.

To be quantitative about the ion-drag phenomenon we require a con-
stitutive law to describe the conduction of current through the fluid. Here a
simple picture of the force equilibrium for a single ion is helpful. Suppose
that an ion with a charge q moves with a velocity v, relative to the gas in an
electric field intensity E. We would expect (at least at atmospheric pressure)
that the ion would experience a frictional drag force proportional (say, by
the constant 7) to the relative velocity v,. In the absence of appreciable effects
from acceleration, force equilibrium on the ion requires that

v, = q. (12.3.1)

If we let n be the number density of the ions, then the current density is

J, = nqv,, (12.3.2)

which, in view of (12.3.1), can also be written

J, = pyE, (12.3.3)

where p, = free charge density = nq,
/ = q/y = mobility of the ion.

Equation 12.3.3 is a constitutive law for the medium at rest and plays the
same role in what follows as Ohm's law did in Section 7.2. This law holds
in a frame with the same velocity v as the moving fluid, where it would be
written as JX = pfpE'. In view of the field transformations for an electric
field system (Table 6.1)*, the constitutive law can be written in the laboratory
frame as

Jf = p,(/tE + v). (12.3.4)

In the example we now undertake it is assumed that the mobility JA is a
constant, found from laboratory measurements. Note that pE is the velocity
of an ion relative to the fluid.

An electrostatic pump might be constructed as shown in Fig. 12.3.1. The
system consists of a nonpolarizable (e = co) gas flowing with constant
velocity

v = iv o  (12.3.5)

through a cylindrical insulating tube of cross-sectional area A. At z = 0 and
z = 1, plane conducting screens are placed perpendicular to the axis. We
assume that the screens do not affect the gas flow but make electrical contact
with the gas. The screens are connected to external terminals that are excited

* Appendix G.
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at this plane

Fig. 12.3.1 Configuration for a gaseous electrostatic pump or generator.

by the constant-current source Ioas shown. At the plane z = 0 positive ions
are injected into the gas by a source of ions.

For now we assume that this source supplies ions at a rate necessary to
maintain the charge density po at the inlet screen:

at z = 0, p, = P0. (12.3.6)

The current density and electric field intensity are assumed to have only
z-components,

J = i.J, (12.3.7)
E = iE,

and to be functions of z alone. Attention is confined to steady-state operation.
In addition to the boundary condition of (12.3.6), the equations we need

to solve this problem are the z-component of (12.3.4)

J = p,(uE + v.), (12.3.8)
Gauss's law written as

dE
Eo = Pt, (12.3.9)

dz

and the conservation of charge for steady-state conditions

dJd- = 0. (12.3.10)
dz

The area over which current flows is A; consequently, the current density
and the source current are related by

J = Io. (12.3.11)

12.3.1
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We first solve (12.3.8) for the electric field intensity to obtain

E = - + . (12.3.12)
P Ph#

Next, this expression is differentiated with respect to z and (12.3.9) is used
to eliminate E:

p -= d z(1" (12.3.13)
e0  dz \pgsl

Expansion of the derivative and use of (12.3.10) yields

dP= 1_ P 3 (12.3.14)
dz EoJ

Integration of this expression, use of the boundary condition of (12.3.6), and
some manipulation yield

S+ 2 (Poo)Z_ , (12.3.15)
Po R, J I

where R, = E0vo/Popl is the electric Reynolds number.
The plot of the free charge density shown in Fig. 12.3.2 makes it evident

that the rate of decay down the channel is decreased as the electric Reynolds
number is increased.

Substitution of (12.3.15) into (12.3.12) gives the electric field intensity
between the grids

E= -1 + 1[ + 2 o ( )]} (12.3.16)JU OV R J 6) 1

Pf

p.

Fig. 12.3.2 Charge-density distribution between grids. J/poVo = 1.

I
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0Z

Fig. 12.3.3 Distribution of electric field intensity between the grids. J/pov = 1.

If the ion source at z = 0 is essentially limited by space charge, it will emit
just enough charge to make the electric field at z = 0 vanish.* From (12.3.16)
this requires that

J
- 1. (12.3.17)

In our discussion it is assumed that J, Po, and vo are positive. Remember that
pE is the velocity of the ions relative to the fluid. This condition requires
that the ions have the same velocity as the fluid at z = 0. Then the electric
field is positive everywhere between the grids, as shown in Fig. 12.3.3. This
means that the ions move more rapidly than the fluid and, as we shall see,
the system operates as a pump.

As for the MHD machine discussed in Section 12.2.1, two "terminal"
characteristics of the electrohydrodynamic flow interaction are of interest-
the pressure change from inlet to outlet and the terminal voltage. The first
can be computed from the electric field intensity by making use of the Maxwell
stress tensort. The pressure forces acting on the fluid in the channel section
between z = 0 and z = I are just balanced by the Maxwell stresses acting
over the surface enclosing this section. Because there are no electrical shear
forces,

A[p(I) - p(0)] = A[T11 (1) - TI(0)] = 1 Aeo[E2(l) - E2(0)]. (12.3.18)

Since we have constrained E(0) to vanish, it is clear from this statement that

* For a discussion of this model for the ion source see O. M. Stuetzer, "Ion Drag Pumps,"
J. Appl.Phys., 31, 136 (January 1960).
t Section 8.3 or Appendix G.
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p(l) > p(O). In fact, from (12.3.16)

p(l)--p(O) + + -Rp()-p(0) = 2(V1) + ( + .]2 (12.3.19)

This result indicates that the larger R,, the smaller the pressure rise between
the grids. This is misleading because both the electric Reynolds number Re
and the first factor in (12.3.19) depend on vo. If we think of holding vo fixed,
however, and recall that R. is inversely proportional to 1, (12.3.19) shows
that the pressure rise increases as I increases.

To obtain the terminal voltage V we integrate the negative of the electric
field intensity from z = 0 to z = 1:

V L= 1 1-+1 ) - 1. (12.3.20)

This voltage is negative, as must be the case if power is supplied by the current
source to the fluid. The fact that there is a pressure rise in the direction of
flow indicates that work is done on the fluid as it passes through the region
between the grids.

Ion-drag interactions can be used not only to pump slightly conducting
fluids but also for conversion of energy from mechanical to electrical form.*
In gases the mobility of ions is so great that such devices tend to lack effi-
ciency. This shortcoming can be obviated either by using liquids, in which the
mobility of ions tends to be much lower, or by replacing the ions with larger
charged particles of liquid or solid. In any case, the electric pressure eo4E0

tends to be small compared with the magnetic pressure JjUH2 because the
electric field intensity is limited by the breakdown strength of the dielectric
medium. Hencefor agiven size of device the amount of energy converted in
an electric field interaction is much less than that found for a magnetic field
interaction.

One of the most significant reasons for our discussion of the ion-drag
phenomenon is that it is commonly (and altogether too easily) encountered
in high voltage systems, in which it accompanies corona discharge. A simple
laboratory demonstration of the effect is shown in Fig. 12.3.4, in which two
wire grids are placed at a potential difference of about 25 kV. Perpendicular
segments of wire are mounted on the lower electrode to form a "bed of nails,"
and when this grid is electrified the tips of these segments provide sites for
corona discharge. This discharge is the source of ions at z = 0 in Fig. 12.3.1.

* B. Kahn and M. C. Gourdine, "Electrogasdynamic Power Generation," AIAA J., 2,
No. 8, 1423-1427 (August 1964). Also, A. Marks, E. Barreto, and C. K. Chu, "Charged
Aerosol Energy Converter," AIAA J., 2, No. 1, 45-51 (January 1964).
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Fig. 12.3.4 Simple laboratory demonstration of ion-drag effect. In the absence of an
applied voltage the balloon rests on the plastic enclosure. With voltage, it is pushed
upward by ions being conducted between the grids.

In the absence of an applied voltage, the balloon rests on the plastic enclosure.
With voltage, it is pushed upward by the pumping action between the grids.

12.3.2 Polarization Interactions

The analog to the magnetization interactions with fluids, discussed in
Section 12.2.4, is the polarization interaction with electric fields-sometimes
referred to as "dielectrophoresis." The polarization force density for fluids
was developed in Section 8.5, in which it was found that in the absence of
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free charges a fluid with permittivity Ewould experience the force density*

F= -E E.EVe + V ap EE . (12.3.21)

The first term is due to inhomogeneity of the fluid. Its effect is made familiar
by the example shown in Fig. 8.5.6, in which a slab of dielectric material is
pulled into the region between plane-parallel electrodes placed at a constant
potential difference. The second term is due to changes in the volume of the
material. It can be included in the analysis of electromechanical interactions
with an incompressible fluid, but as we saw in Section 12.2.4, its effect will
cancel out of any measurable prediction based on an incompressible model for
the fluid. In what follows we do not include the second term of (12.3.21) in
our analysis but rather leave it as an exercise to see that it has no effect. We
are concerned with the dynamics of a fluid with uniform e; hence there is no
force density in the bulk of the material. In the absence of the electrostriction
force density, the electric stress tensor becomes [(8.5.46)* with al/ap = 0]

Tij = EEiE, - lbijEEkEk. (12.3.22)

Now consider the example shown in Fig. 12.3.5. Here we have a fluid
pendulum very much like that shown in Fig. 12.2.7. This pendulum, however,
is upside down because g is directed upward. The problem has a practical

Fig. 12.3.5 A liquid pendulum containing dielectric fluid. Slightly diverging plates are used
to impose a spatially varying electric field that tends to maintain the liquid in the bottom of
the tank in spite of the acceleration g.

* See Table 8.1, Appendix G.
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basis. Suppose that we wish to use the electric field to provide an artificial
"gravity" to bottom the fluid within a tank under the near-zero gravity
conditions of outer space; for example, the fluid might be the cryogenic
liquid fuel used to propel a spacecraft. The electric field then provides fluid
at a drain placed at the "bottom" of the tank. In this case g represents the
effect of acceleration of the vehicle, as, for example, that which would occur
during attitude control maneuvers. We have chosen g to be upward because
this appears to be the worst possible situation in terms of removing the fluid
from the bottom of the tank.

The U-shaped tank is considered in this example because it is easily
analyzed with the tools developed in this chapter. Even though the example
may seem academic, it has practical significance in the design of fluid
orientation systems.

Because there are no electrical forces in the bulk of the liquid, we can use
Bernoulli's equation derived in Section 12.2.1b. Again we carry out an inte-
gration of the momentum equation, as indicated by (12.2.33a), between
points a and b, defined in Fig. 12.3.5. Now, however, the interfaces are
subject to surface forces [due to the first term in (12.3.21)], and we cannot
claim that the pressures p,, and p, (just below the respective interfaces) are
equal. In carrying out the integral of (12.2.33a) we retain the pressures
evaluated at the points a and b to obtain

pl-t = 2pgx, + p,, - pb. (12.3.23)at
Here r is the velocity of the fluid directed from a to b so that

av d=2x (12.3.24)
at dt'

We have approximated the velocity as being the same along a streamline
connecting the points a and b. The cross-sectional area of the pendulum
varies somewhat because the vertical legs are constructed with side walls
composed of slightly diverging electrodes. Insofar as the fluid velocity is
concerned, the effect of the diverging plates represents a nonlinear effect
equivalent to slight changes in the length I of the pendulum; this effect is
ignored here.

The fundamental difficulty in keeping the liquid in the bottom of the tank,
with no electric field, is illustrated by combining the last two equations. With
no applied voltage, p, = p, and it is clear that the equilibrium represented
by x, = 0 is unstable. It is the purpose of the electric field to stabilize this
equilibrium.

Before completing the mathematical representation of the dynamics
consider physically how the polarization force density [the first term in

12.3.2
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(12.3.21)1 can stabilize the equilibrium at x, = 0. This force is finite only at
the two interfaces, where it is singular (infinite in magnitude over an in-
finitely thin region of space); that is, it comprises a surface force directed in
the positive x-direction on each of the interfaces in proportion to the square
of the electric field intensity. With the pendulum in equilibrium, the electrical
forces on each of the interfaces just balance. Suppose that the system is
perturbed to the position shown in Fig. 12.3.5. Then the upward-directed
force on the interface at a is increased (the plates are closer together at this
point; therefore E is greater), whereas that at b is decreased. This tends to
return the pendulum to its equilibrium position. We expect that if we can
make this stabilizing electrical effect large enough it will outweigh the de-stabi-
lizing effect of gravity.

To provide a quantitative statement of the condition for stability we com-
plete the equation of motion by relating the pressures Pa and Pb. Force
balance on the interfaces, in view of the force diagrams shown in Fig. 12.3.6,
requires

Pa, - Pa = T11"' - T1 = -_(E 0 - e) - , (12.3.25)

Pb' - Pb = T 1b' - T1 1 b = -- (E0 -- ) • (12.3.26)

Of course, the spacing d used in these expressions is evaluated at the instan-
taneous locations of the respective interfaces.

da = do - cxa, (12.3.27)

db = do + cxb. (12.3.28)

Here c is determined by the rate at which the electrodes diverge. Then, to
linear terms, the combination of (12.3.25) and (12.3.26) (remember, x, = x,)
gives

Pa - Pb + Pb' - Pa' = -2c(e -- o) )( ( . (12.3.29)

Formally, we can see that p, = p,a by joining points a' and b' with a stream-
line passing through the fluid above the interfaces (where the vapor phase
is present and density is negligible). Then, by combining (12.3.25), (12.3.26),

Pa'J a' IT 11"' Pb' b1 IT.b'
I I I

TIa a Tp1 1b6 fP 6

Fig. 12.3.6 Force equilibrium for each of the interfaces shown in Fig. 12.3.5.
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and this last expression, we obtain the required equation of motion for the
pendulum:

p d + x, -2pg + 2c(f - co) ] 0. (12.3.30)

From this it is clear that the equilibrium is stable if the voltage is made large
enough to satisfy the condition

v2
c(f - Eo) - > pg. (12.3.31)

d0

Liquid being oriented under near-zero gravity conditions is shown in
Fig. 12.3.7. Each pair of adjacent plates has a potential difference. The
zero gravity situation was created by flying the experiment within a KC-135
in a near-zero gravity trajectory. The liquid is Freon 113 with aniline dye
added for purposes of observation. The basic mechanism for orienting the
liquid is the same as that for the example considered in this section. Any two
pairs of diverging plates can be considered as constituting a fluid pendulum
with the essential behavior of that shown in Fig. 12.3.5. The stability con-
dition of (12.3.31) guarantees that the equilibrium with the fluid in the tank
"bottom" will be stable. Of course, a more complete representation of the
dynamics requires a continuum model,* for instability may develop in the
region between a single pair of electrodes.

We have stated from the outset that free charge forces are of negligible
importance. In practice, this is guaranteed by making the applied voltages
V of alternating polarity with sufficiently high frequency that free charges
cannot relax into the fluid. If the frequency is high compared with typical
mechanical frequencies, it is possible to use the same mathematical model
as that developed here, except that V is the rms value of the voltage.

12.4 DISCUSSION

In this chapter we have introduced some of the fundamental laws and
analytical techniques that are used in the study of electromechanical inter-
actions with conducting, magnetizable and polarizable fluids. We have applied
these laws and techniques to the analysis of systems in which an incom-
pressible, inviscid fluid model is appropriate. Even though the incompressible,
inviscid fluid model may seem quite restrictive, it provides an understanding
of the basic electromechanical interactions that occur in all sorts of magneto-
hydrodynamic and electrohydrodynamic systems, including those with
gaseous conductors.

* In fact, a description of this mode of instability is given in Section 10.1.
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Fig. 12.3.7 Orientation system for storing liquids within a tank in the zero gravity environ-
ment of space. The tank used in this test was spherical and transparent, with circular
electrodes which are seen here edge-on. The electrodes converge toward the bottom of the
picture; thus this is the region in which the electric field should provide an artificial
"bottom." (a) With one g acting toward the top of the picture and no electric field, the

liquid is in the upper half of tank; (b) liquid oriented at artificial "bottom" of tank under
near-zero-gravity conditions created by flying the tank within a KC-135 in a zero gravity
trajectory. The electrodes are at alternate polarities and can be viewed as a combination
of pendulums with the basic configuration shown in Fig. 12.3.5. (Courtesy of Dynatech
Corp., Cambridge, Mass.)

788

Image removed due to copyright restrictions. 



Problems

In Chapter 13 the restriction of an incompressible fluid is relaxed, and the
effects of compressibility on electromechanical interactions are studied,
although the restriction to inviscid fluid models is still retained.

PROBLEMS

12.1. The mechanism shown in Fig. 12P.1 is to be used as an electrically driven rocket. An
insulating fluid of constant density p is compressed by a piston. The fluid is then ejected
through a slit (nozzle) with a velocity V,; because dD << LD, V, is approximately a constant,
and the system is approximately in a steady-state condition (8/8at = 0):

(a) What is the pressure p at the inside surface of the piston? (Assume that p = 0
outside the rocket.)

(b) Under the assumption that d < L, what is V,?
(c) What is the total thrust of the rocket in terms of the applied voltage Vo and other

constants of the system?

Fig. 12P.1

12.2. A magnetic rocket is shown in Fig. 12P.2. A current source (distributed over the
width W) drives a circuit composed in part of a movable piston. This piston drives an
incompressible fluid through an orifice of height dand width W.Because D > d, the flow is
essentially steady.

(a) Find the exit velocity V as a function of I.
(b) What is the thrust developed by the rocket? (You may assume that it is under

static test.)
(c) Given that I = 103 A, d = 0.1 m, W = 1 m, and the fluid is water, what are the

numerical values for V and the thrust? Would you prefer to use water or air in
your rocket?

Movable perfectly conducting piston

/o2 Incompressible
I o inviscid fluid D d -

p=00 I VFP',o o P=
The rocket has adepth W into the paper

Fig. 12P.2




