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Simple Elastic Continua

transient situations. At the same time the frequency-wavenumber picture of
the dynamics, represented by the dispersion equation introduced in Section
9.2, provides the unifying theme for Chapter 10.

PROBLEMS

9.1. A long thin steel cable of unstressed length I is hanging from a fixed support, as
illustrated in Fig. 9P.1. Assume that the origin of coordinates is at the support and that x
measures positive as shown. Assume that the steel cable has the following constants:

Cross-sectional area A = 10- 4 m2

Young's modulus E = 2.0 x 1011 N/m2

Mass density p = 7.8 x 10i kg/m s

Maximum allowable stress Tmax = 2 x 109 N/m2

x

Steel cable -

Fig. 9P.1

(a) Find the length of cable Ifor which the maximum stress in the cable just equals the
maximum allowable stress.

(b) Find the displacement 6 and stress T in the cable as functions of z.
(c) Find the total elongation of the cable.

9.2. Two thin elastic rods are arranged as shown in Fig. 9P.2. The first rod has modulus of
elasticity El, density Pl, and cross-sectional area A1. It is attached at one end to a rigid
wall and at the other to a very thin rigid plate of mass m and area Am. On the other side of

V0

Fig. 9P.2
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this plate is attached a second thin elastic rod with elastic modulus E2, density P2, and cross-
sectional area A2. The other end of the second rod is fixed to a perfectly conducting thin
plate with mass M and area AM. This plate is held at a potential Vo with respect to a second
capacitor plate a distance d away. In the absence of gravity and with Vo = 0, the length
of the first rod is L1 and the length of the second is L 2. Assuming now that the system is
immersed in a gravitational field g and that Vo # 0, find the following:

(a) The stress in the first rod TM(x) and the displacement in the first rod 6V)(@).
(b) The stress in the second rod T(2)(x) and the displacement in the second rod

6(2)(z).

9.3. In Fig. 9P.3 a thin elastic rod of cross-sectional area A, equilibrium length 1, elastic
modulus E, and mass density p is fixed at one end (x = 0) and attached to a rigid mass M

x=O
I u Equilibrium length _.

0 f(t)

uirbliuqem le 

M

elastic modulus E
mass density p

Fig. 9P.3

at the other (x = 1). The mass is driven by a force source f(t). The system constants are
such that the mass M is much greater than the mass of the elastic rod; that is,

M > pAl.
The force source is constrained to be

f(t) = Re (foei't),

where fo and ao are positive real constants. The system is operating in the sinusoidal steady
state. Neglect gravity.

(a) Find the displacement 6(x, t) and stress T(x, t) in the elastic rod.
(b) Show a lumped-parameter mechanical system that represents the behavior of the

system in Fig. 9P.3 for low frequencies (from wO= 0 up to and including
the lowest resonance frequency). Evaluate the equivalent elements in terms of the
given parameters.

9.4. A long thin elastic rod with cross-sectional area A, unstressed length 1, modulus of
elasticity E,and mass density p is constrained at one end by the three ideal, lumped elements

Elastic rod
.-- .. ..- : -... .. A

x=0

Fig. 9P.4
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B, K, and M and at the other by a stress source To(t), as shown in Fig. 9P.4. Determine the
values of B, K, and M that are necessary for the response of the rod to To(t) to be rep-
resentable purely as a wave traveling in the negative x-direction. (Zero is an acceptable
value for an element.)

9.5. A long thin rod of elastic modulus E, mass density p, and cross-sectional area A is
fixed at one end (x = 0) and constrained at the other (x = 1)by a force source f(t) and a

Long thin rod
elastic modulus E
mass density p
cross-sectional area A f(t

xO 6(1, t)

Fig. 9P.5

lumped linear damper of coefficient B, as illustrated in Fig. 9P.5. The applied force is
sinusoidal f(t) = Re (Foeiwt), where F0 and w are positive constants. The system is oper-
ating in the sinusoidal steady state.

(a) Write the boundary condition at x = I in terms of the stress T(1, t), the displace-
ment 6(1, t), and the applied forcef(t).

(b) Assume that the displacement has the form 6(x, t) = Re [6(x)ej•t]. Find the
complex amplitude 6(x) in terms of given data.

(c) If the damper coefficient B is positive and the frequency w is real, can the system
exhibit a resonance? That is, can the displacement 6 be infinite with a zero applied
force? Give justification for your answer.

9.6. A thin, circular magnetic rod is fixed at one end and constrained at the other end by a
transducer (Fig. 9P.6). In the absence of an excitation, the transducer is simply biased by

Equilibrium gap
s

Thin rod
mass density p

Sla•ctire modullus E

/ cross-sectional area A

Ignorable
- x gaps

I
Fig. 9P.6
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the constant current source L When the rod is in static equilibrium, its length is I and the
gap spacing is d. Compute the natural frequencies of the system under the assumption that
the magnetization force on the rod acts on the end surface. A graphical representation of
the eigenfrequencies is an adequate solution.

9.7. In Fig. 9P.7 two identical thin elastic rods are connected by a thin plate of mass M
and area AM . The plate is positioned between four springs, each having constant K. All

.M 
AKK /e K

r E, p,A

6(-L, t)= 6osifwt

E, p, A

_W4 1I
K K

L >i _L >

Fig. 9P.7

springs are relaxed when the plate is at x = 0. The system is driven on the left with a dis-
placement S(-L, t) = So sin wt. Assume that steady state has been established.

(a) Write the general solution for the stress T(x) and the displacement S(x) everywhere
in both rods in terms of arbitrary constants.

(b) What are the boundary conditions that determine the constants in (a)?
(c) Find the stress T(x, t) everywhere in both rods.

9.8. Example 9.1.5 considers the response of the delay line shown in Fig. 9.1.14 to a transient
input signal. In this example design approximations were made concerning the effect of the
self-inductance in the output circuit [see approximation following (t)]. You wish to compute
the sinusoidal steady-state response of this system without making this approximation.
Confine your attention to the sinusoidal steady-state response vo = Re (3oeWmt),to theinput
ii = Re (fleirt), and find the transfer function H(w) = •olti .

9.9. A magnetic transducer is used to excite a thin elastic rod, as shown in Fig. 9P.9. The
mass Mis attached to the rod, which in turn is fixed to a rigid support at x = 0. The driving
current I(t) is much smaller than Io and is given by I(t) = Re [lexp (jwt)]. Under the
assumption that the displacements of the mass from its equilibrium position are small,
complete the following:

(a) Find an expression for the position of the mass y(t). You may assume that when
there is no applied current the mass is centered between the pole faces and the rod
has a length L.

(b) Under what conditions would you say that itis meaningful to consider the magnetic
yoke and plunger as rigid but to recognize that the rod is made of an elastic
material?

V;-c Wall--* N
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Fig. 9P.9

9.10. A long thin rod is fixed at x = 0 and driven at z = 1, as shown in Fig. 9P.10. The
driving transducer consists of a rigid plate with area A attached to the end of the rod, where
it undergoes the displacement 6(1, t) from an equilibrium position exactly between two
fixed plates. These fixed plates are biased by potentials Vo and driven by the voltage
v = Re (2e••o), as shown. (IPI << V0)

(a) Derive a boundary condition relating 6(1, t), (a6/ax)(l, t) and v(t).
(b) Compute the driven deflection of the rod 6(x, t).

x=1

dId

Fig. 9P.10
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Depth D

v0

R

Fig. 9P.11

9.11. A long thin elastic rod (Fig. 9P.ll) is fixed at x = -L. At a = 0 the rod is connected
to a movable perfectly conducting plate which has negligible mass. The plate is electrically
grounded and constrained to move only in the .- direction. Assume

v = V- + v8 , vsj V0 ,
y = Yo + y,, Y << Yo,

where y, = 6(0) = small signal displacement. Find the dc voltage (in terms of given
parameters) for which there is no elastic wave reflection at the right-hand boundary for
wave frequencies such that w << IRC o .

9.12. The system of Fig. 9P.12 consists of two electric field transducers coupled mechanically
by a long, thin rod of material with Young's modulus E, mass density p, and dielectric
permittivity e > E0. With the bias voltages Vo applied and the system at rest, the rod has

Depth d perpendicular to paper

Dielectric rod E, p, e>eo

V0 +

L2 22

Fig. 9P.12

length I and is in the equilibrium position y1 = y• = 0. The dimensions are defined in the
figure and you can neglect fringing fields and mechanical friction. For sinusoidal excitation
v s = Re (O,ejOt), such that jil << V0 and steady-state operation about the equilibrium
condition, assume that the current i2 is given by i2(t) = Re (4zej2t).

(a) Find the transfer admittance Y(jwt) = 121s,.
(b) Specify the mathematical relation that defines the poles of this admittance. Find

the lowest nonzero frequency at which a pole occurs.

9.13. Figure 9P.13 shows an electromechanical filter constructed with two magnetic
transducers and a long (length L) thin rod. The transducers, which are alike, are symmetric
about the axis of the rod. The ends of the rod form the plungers of magnetic circuits, with
axially symmetric air gaps of length g. The left transducer is driven by a constant bias
current I0 and a small current i = Re (leijt). This signal is transmitted by the rod to the
right transducer, which is also biased by a constant current I,.
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L

i = Re iej ot

Fig. 9P.13

(a) Use the energy method to find the magnetic forces acting on the ends of the rod.
(b) Check the result of part (a) by using the magnetic stress tensor Til = pHiHI -

bigpHuH kH to find the forces acting on the ends of the rods.
(c) Assume that the magnetic forces act just on the ends and compute the transfer

function G(co) = tiout/l, where Vout = Re (bouteijt).
(d) How would you adjust the system parameters so that I3outl is proportional to

I11, independent of frequency (over some range of frequencies)?

9.14. The electromechanical delay line shown in Fig. 9P.14 consists of a thin elastic rod
terminated at both ends by capacitor plates that are massless and very thin. The elastic rod

Massless, o.--*. plates --- xt

Fixed
plate
area A

Fig. 9P.14

has length L in the absence of electrical excitations (v, = 0 and Vo = 0). Assume that
6(0) << d and that 6(-L) << d.

(a) If v, = V0 and the battery at the other capacitor is connected as shown, find the
stress everywhere in the rod.

(b) Suppose that v, = Vo + vo(t), where vo(t) is a short pulse. How long will it be
before the signal is detected as a pulse in the output current i?
Compute a numerical value for the delay, assuming that the rod is steel with
length 1 m.
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(c) What must the value of the resistance R be, so that if v, = Vo + vo(t), where vo
is again a short pulse, no pulse will travel back in the -x--direction after
encountering the capacitor plate at x, = 0? You may wish to do this by assuming
that v,(t) is a sinusoid and requiring that there be no reflected wave in the rod
for all frequencies of excitation. Assume that

eoA1R dv' wEoA 1Rv'> - or «<1,
d dt d

where v' is the voltage across R.

9.15. This problem is intended to help you apply the techniques presented in Section 9.1
by considering an analogous situation, namely, the torsionalvibrationsof a thin, cylindrical
elastic rod.

(a) A static experiment is performed on the rod as follows. First, imagine that a line
has been painted along one radius at every cross section of the rod when it is
unstressed (see Fig. 9P.15). Now suppose that a constant, twisting torque r is
applied to the rod. If we single out a small length Az of the rod (Fig. 9P.15b). we

'-' Yn -

(a) (b)

Fig. 9P.15

find that the diference between the angular deflections y'1 and y• of the painted
line on the two faces is a constant ft times the product of the applied torque and
the length Az. Find the relation between the torque r and the deflection angle y
in the limit as Az -+ 0.

(b) We wish to find the dynamic equations for the rod. Assume that the twisting
torque 7 is now a function of z and t, r = r(z, t). Also, y = y(z, t). The rod has
a moment of inertia J (per unit length) about the z-axis. Write an equation of
motion for a length Az of the rod. Then take the limit of this expression as Az
approaches zero.

(d) Find a single partial differential equation for y(z, t).

9.16. The elastic bar shown in Fig. 9P.16a extends to infinity in the z-direction and has free
surfaces at y = 0 and y = a. Shearing stresses T,, are applied uniformly over the surface at
x = 0 to set the bar into a mode of vibration, where the material is displaced from equilib-
rium by the amount 6,z(x, t)i z. We wish to find a differential equation of motion for 6,-

(a) Write the differential force equation in the z-direction by using the differential
slice of material shown in Fig. 9P.16b and the stress function Tzx(x, t) N/m2 .

(b) Define a shear strain ezx and relate it to the displacement function 6z. Your
strain function should be defined such that we would expect Tzx = 2Gexz(G-N/m 2 ),
where G is a constant property of the material. Figure 9P.16c provides a starting
point in the derivation.

(c) Combine the results of (a) and (b) to obtain a single differential equation for 6,.
What is the propagational velocity of disturbances in the x-direction?
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T=

x

Ix,t)

I II I
x x+dx x x+dx

(b) (c)

Fig. 9P.16

9.17. In general, an inviscid fluid differs grossly in its dynamics from an elastic solid. If,
however, only normal stresses are involved and particle displacements are small, the
dynamics of fluids and solids become similar. You are familiar with the derivation of the
equation of motion for material in a thin elastic rod. The following derivation is somewhat
similar. A tube filled with an initially stationary gas is shown in Fig. 9P.17a. We wish to
derive an equation for the particle velocity v(x, t) within the tube.To do this write an equation
expressing conservation of mass for a slice of the material, as shown in Fig. 9P.17b. The
fluid pressure p(x, t) is a simple form of the stress tensor Ti, = -- • •p(x, t). We can write
a differential equation to express conservation of momentum (f = ma) by using the slice of
material shown in Fig. 9P.17c.
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(b) (c)

Fig. 9P.17

(a) Show that conservation of mass is expressed by

av ap'
POaZ = t "

where we ignore products of perturbation quantities and p = Po + p'(x, t); P0o
is the density of the gas when it is stationary.

(b) Show that conservation of momentum is expressed by

av ap'
PO = - 8X'

where p = Po + p'(x, t) andPo is the pressure when the gas is stationary.
(c) Physical measurements show that the pressure and density are related by a given

function p = p(p) or

P = P(Po ) + a P

Use the results of (a) and (b) to find one equation for the velocity.
(d) Figure 9P.17d shows the tube driven at x = I by a piston and terminated at x = 0

in a rigid wall. What is v(x, t)?

9.18. Figure 9P.18 shows the distribution of velocity a6/at at t = 0 in a thin elastic rod of
infinite length. Assume that the rod is characterized by the constants E, p, and A, where
Eis Young's modulus, p is the density and A is the cross-sectional area of the rod. Given
that T(x, 0) = 0, make a plot of T(x, t) in the x-t plane. This plot should be similar to that
shown in Fig. 9.1.8.

V(



Simple Elastic Continua

u(x,0)

Fig. 9P.18

9.19. Figure 9P.19 shows the distribution of stress T(x, 0) = E(Ma/ax) at t = 0 in a thin
elastic rod of infinite length. Assume that the rod is characterized by the constants E, p,
and A, where E is Young's modulus, p is the density, and A is the cross-sectional area of the
rod. Given that v(x, 0) = 0 = a86/t, make a plot of T(x, t) andv(x, t) in the x-t plane. This
plot should be similar to that shown in Fig. 9.1.8.

T(x, 0)

T(x, 0) = cos rx
2a

-a5_x:a

Fig. 9P.19

9.20. A long thin rod supports longitudinal motions 6(x, t).

(a) Consider first the case in which the material initially has the velocity distribution
(&5/8t)(x, 0) shown in Fig. 9P.20a and initially (a•/ax)(x, 0) = 0. The rod has a
free end at x = 0 but extends to infinity in the positive x-direction. Sketch the
resulting velocity v(x, t) in the x-t plane.

(b) Now, in addition to the initial velocity of Fig. 9P.20a, the end of the rod at x = 0
is driven by a force that constrains the stress T(0, t) as shown in Fig. 9P.20b.
Sketch the resulting velocity v(x, t) in the x-t plane.

(b)

Fig. 9P.20

I
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9.21. An electromechanical device that transduces a pulse of current I(t) into a delayed
stress pulse to rupture a diaphragm is shown in Fig. 9P.21. The current I(t) passes through
parallel, highly conducting plates shorted by a movable block with conductivity a. The
resulting motion initiates a stress at the left end of the rod, which propagates to the right
end to provide the rupturing stress. The current has the form

01-Cos- 0 <t<T,

( 0, t < 0, t > 7.

The time required for the pulse to traverse the length of the rod is long compared with r.

Block has
conductivity a
and mass M

Depth D .- D

- !6Thin rod having
S cross-sectional area A,

b modulus E, density p

(a) Thin diaphragm

Io

,I(t)

- \
(b)

Fig. 9P.21

(a) Model the electromechanics by assuming that the current is returned on the inside
surface of the block and write the boundary condition imposed on the left end of
the rod by the magnetic force.

(b) For what values of 7-(in terms of b, a, etc.) would the surface current model be
appropriate?

(c) Under what conditions can the mass M of the block be ignored in the boundary
condition of (a)? Under this condition what is the current Io required to produce
the peak stress Tr at the right end of the rod? (For this calculation assume that
the right end of the rod is fixed in displacement.)

9.22. You are given the following pair of nonlinear differential equations:

8w 8W WU K WU
- + W- + U• 0, (1)

aU 8(UW)
+- = 0,

it dx
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where K is a positive constant. In an equilibrium condition W is zero and U is a positive
constant given by U = C.

(a) Linearize (1) and (2), using the given equilibrium conditions.
(b) By use of the equations of part (a), what is W(x, t) if at x = 0, W = 0, at

x = -L, W = Wo cos ot?

9.23. Two identical elastic membranes of mass am per unit area and equilibrium tension S
are joined together at x = 0 (Fig. 9P.23). Also attached to the membranes at x = 0 is a bar
of mass M per unit width (kg/m). Both membranes are tied to rigid walls at their other
ends (x = ±L).

Bar

ar S

L L

Fig. 9P.23

(a) Compute the natural frequencies of the system.
(b) Explain the effect of the mass/unit length M on the natural frequencies. In

particular, give a physical reason for what happens when M = 0 and M -+co.

9.24. Figure 9P.24 shows an elastic membrane fixed at x = L and x = -L and coupled to
a pair of capacitor plates at x = 0.

(a) Find the natural frequencies of the system.
(b) What is the effect on the natural frequencies of raising the voltage Vo?

Fig. 9P.24

9.25. A wire is pinned at x = 0, where a potentiometer is attached. With the help of an
amplifier G, this potentiometer produces a current il proportional to the slope.

as
il = G x (0, t), G = constant.

The current i, is used to drive transducers, which in turn motivate the end of the spring at
x = -1. The two transducers, which are alike, are connected so that in the absence of i1
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Plunger
Wire, having tension f (newts)

/ mass/unit length m

Fig. 9P.25

there is no net force on the wire. The terminal relation for the lower transducer is

a
where y = ý(-1, t) as shown in Fig. 9P.25.

(a) One boundary condition is $(0, t) = 0. What is the other condition? Ignore the
mass of the plungers.

(b) Find a transcendental expression for the eigenfrequencies (natural frequencies)
of the system. Make a plot that shows the graphical solution of this equation.

(c) What are the natural frequencies when G = 0?
(d) What is the effect of raising the gain G on the first and second nonzero eigen-

frequencies ?
(e) Is it possible that this system can be unstable? If so, for what values of G?

9.26. A magnetic transducer is used to excite a thin elastic membrane of length L, as shown
in Fig. 9P.26. The mass M is attached to the membrane, which in turn is fixed to a rigid
support at x = 0. The driving current I(t) is much smaller than Io0 and is given by

I(t) = Re [Iexp (jwt)].

ý-Mass M Mass/unit area cm "Y
tension S

x

e(xt)

Depth D into paper

Fig. 9P.26
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Work under the assumption that the displacements of the mass from its equilibrium
position are small:

(a) Find an expression for the position of the mass, y(t). You may assume that when
there is no applied current the mass is centered between the pole faces.

(b) Find the resonance frequencies of the system. Your solution may be represented
graphically (e.g., see Fig. 9.2.11).

9.27. A string with tension f and a mass per unit length m is fixed at x = 1I,as shown in
Fig. 9P.27. At x = 0 it is subject to the force F(t) shown in Fig. 9P.27a.

(a) Write the boundary condition at x = 0 which relates F(t) to ý. For this purpose
divide the function $(x, t) into two functions valid to the left and to the right of
x = 0.

(b) The displacement $(x, t) can be divided into an odd and an even function of x.
Show that the odd function $(x, t) = -- (-x, t) is not excited by the driving
force.

(c) We now confine ourselves to displacements that are even functions of x, $(x, t) =
$(-x,t). For t < 0 the string assumes a static shape with the force F(t) = Fo,
where Fo is a given constant (see Fig. 9P.27b). Use the equation of motion to
find $(x), x > 0, for t < 0.

(d) When t = 0, the force F(t) becomes a cosinusoid, as shown in the figure. The
string is initially static and has the dependence on x found in part (c). Find the
displacement ý(x, t), x > 0, t > 0. (Reference. Section 9.2.1.)

x

-I 0 1
(a)

x

-1 0
(b)

(c)Fig.Fo cos wt9P.27

Fig. 9P.27




