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result ← FIRE (#, target, action)
 procedure FIRE (nmiss, where, react)

... 
return result 

Client stub
 Service stub 

proc: FIRE 

args: 3 

type: integer 
value: 2 
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type: procedure 
value: EVADE 

Prepare
request
message.
Send to 
service 

Receive 
request
message.
Call 
requested
procedure.
Prepare 
response
message.
Send to client. 

response: 

acknowledgment 

type: string 
value: “destroyed” 

request: 

Wait for 
response. 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Main program 

RPC client stub 

application protocol


presentation protocol


called procedure 

RPC service stub 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Main program application protocol 

fire (return)
(return) fire 

presentation protocol 

called procedure 

RPC service stub 

Client network
package 

RPC client stub 

Service network
package 

send_send_ receive_ receive_
 messagemessage message message 

transport protocol

Principles of Computer System Design © Saltzer & Kaashoek 2009




Layer One A B C D 

Layer Two J K L 

Layer Three X Y Z 

Principles of Computer System Design © Saltzer & Kaashoek 2009




DATA 

LINK_SEND (pkt, link2) NETWORK_HANDLE


A B 

DATA LH LT 
Link
Layer 

link 2link 1Link

Layer
 link link


protocol
protocol 

C


Link

Layer


Principles of Computer System Design © Saltzer & Kaashoek 2009




NETWORK_SEND (segment

DATA 

, “IP”, nap_1197)


Network
Layer 

network


protocol

Network
Layer 

LINK_SEND (packet, link5) 
lINK_SEND (packet, link2

DATANT NH 

) NETWORK_HANDLE 

Link
Layer 

link5DATANT NH LHLT 

link 2 link

protocol


Link
Layer 

Link
Layer 

Principles of Computer System Design © Saltzer & Kaashoek 2009




FIRE (7, “Lucifer”, evade) 
DATA 

end-to-end


protocol


Network 
Layer 

End-to-End 
Layer 

DATAET EH 

(RPC) 

Network 
Layer 

DATANT NHET EH 

Link
Layer 

DATANT NH LHLT 

Link
Layer 

Link
Layer 

ET EH 

FIRE (7, “Lucifer”, evade)


End-to-End 
Layer
(RPC) 

Network
Layer 

Link
Layer 

Principles of Computer System Design © Saltzer & Kaashoek 2009




The end-to-end argument


The application knows best.
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procedure FRAME_TO_BIT (frame_data, length) 
ones_in_a_row = 0 
for i from 1 to length do // First send frame contents 

SEND_BIT (frame_data[i]); 
if frame_data[i] = 1 then


ones_in_a_row ← ones_in_a_row + 1;

if ones_in_a_row = 6 then


SEND_BIT (0); // Stuff a zero so that data doesn’t 
ones_in_a_row ← 0; // look like a framing marker 

else 
ones_in_a_row ← 0; 

for i from 1 to 7 do // Now send framing marker. 
SEND_BIT (1) 
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procedure BIT_TO_FRAME (rcvd_bit) 
ones_in_a_row integer initially 0 
if ones_in_a_row < 6 then 
bits_in_frame ← bits_in_frame + 1

frame_data[bits_in_frame] ← rcvd_bit

if rcvd_bit = 1 then ones_in_a_row ← ones_in_a_row + 1

else ones_in_a_row ← 0


else // This may be a seventh one-bit in a row, check it out. 
if rcvd_bit = 0 then 
ones_in_a_row ← 0 // Stuffed bit, don't use it. 

else // This is the end-of-frame marker 
LINK_RECEIVE (frame_data, (bits_in_frame - 6), link_id) 
bits_in_frame ← 0 
ones_in_a_row ← 0 
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structure frame 
structure checked_contents 

bit_string net_protocol // multiplexing parameter 
bit_string payload // payload data 

bit_string checksum 

procedure LINK_SEND (data_buffer, link_identifier, link_protocol, network_protocol) 
frame instance outgoing_frame 
outgoing_frame.checked_contents.payload ← data_buffer 
outgoing_frame.checked_contents.net_protocol ← data_buffer.network_protocol 
frame_length ← LENGTH (data_buffer) + header_length 
outgoing_frame.checksum ← CHECKSUM (frame.checked_contents, frame_length) 
sendproc ← link_protocol[that_link.protocol] // Select link protocol. 
sendproc (outgoing_frame, frame_length, link_identifier) // Send frame. 
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procedure LINK_RECEIVE (received_frame, length, link_id) 
frame instance received_frame 
if CHECKSUM (received_frame.checked_contents, length) = 

received_frame.checksum 
then // Pass good packets up to next layer. 
good_frame_count ← good_frame_count + 1; 
GIVE_TO_NETWORK_HANDLER (received_frame.checked_contents.payload, 

received_frame.checked_contents.net_protocol); 
else bad_frame_count ← bad_frame_count + 1 // Just count damaged frame. 

// Each network layer protocol handler must call SET_HANDLER before the first packet 
// for that protocol arrives… 

procedure SET_HANDLER (handler_procedure, handler_protocol) 
net_handler[handler_protocol] ← handler_procedure 

procedure GIVE_TO_NETWORK_HANDLER (received_packet, network_protocol) 
handler ← net_handler[network_protocol] 
if (handler ≠ NULL) call handler(received_packet, network_protocol) 
else unexpected_protocol_count ← unexpected_protocol_count + 1 
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structure packet

bit_string source

bit_string destination

bit_string end_protocol

bit_string payload


procedure NETWORK_SEND (segment_buffer, destination, 
network_protocol, end_protocol) 

packet instance outgoing_packet 
outgoing_packet.payload ← segment_buffer 
outgoing_packet.end_protocol ← end_protocol 
outgoing_packet.source ← MY_NETWORK_ADDRESS 

outgoing_packet.destination ← destination 
NETWORK_HANDLE (outgoing_packet, net_protocol) 
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procedure NETWORK_HANDLE (net_packet, net_protocol) 
packet instance net_packet 
if net_packet.destination ≠ MY_NETWORK_ADDRESS then 

next_hop ← LOOKUP (net_packet.destination, forwarding_table)

LINK_SEND (net_packet, next_hop, link_protocol, net_protocol)


else 
GIVE_TO_END_LAYER (net_packet.payload, 

net_packet.end_protocol, net_packet.source) 
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// Maintain routing and forwarding tables. 

vector associative array // vector[d_addr] contains path to destination d_addr 
neighbor_vector instance of vector // A path vector received from some neighbor 
my_vector instance of vector // My current path vector. 
addr associative array // addr[j] is the address of the network attachment 

// point at the other end of link j. 
// my_addr is address of my network attachment point. 
// A path is a parsable list of addresses, e.g. {a,b,c,d} 

procedure main() // Initialize, then start advertising. 
SET_TYPE_HANDLER (HANDLE_ADVERTISEMENT, exchange_protocol) 
clear my_vector; // Listen for advertisements 
do occasionally // and advertise my paths 

for each j in link_ids do // to all of my neighbors. 
status ← SEND_PATH_VECTOR (j, my_addr, my_vector, exch_protocol) 
if status ≠ 0 then // If the link was down, 

clear new_vector // forget about any paths 
FLUSH_AND_REBUILD (j) // that start with that link. 
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procedure HANDLE_ADVERTISEMENT (advt, link_id) // Called when an advt arrives. 
addr[link_id] ← GET_SOURCE (advt) // Extract neighbor’s address 
neighbor_vector ← GET_PATH_VECTOR (advt) // and path vector. 
for each neighbor_vector.d_addr do // Look for better paths. 
new_path ←{addr[link_id], neighbor_vector[d_addr]} // Build potential path. 
if my_addr is not in new_path then // Skip it if I’m in it. 

if my_vector[d_addr] = NULL) then // Is it a new destination? 
my_vector[d_addr] ← new_path // Yes, add this one. 

else // Not new; if better, use it. 
my_vector[d_addr] ← SELECT_PATH (new_path, my_vector[d_addr]) 

FLUSH_AND_REBUILD (link_id) 
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procedure SELECT_PATH (new, old) // Decide if new path is better than old one. 
if first_hop(new) = first_hop(old) then return new // Update any path we were 

// already using. 
else if length(new) ≥ length(old) then return old // We know a shorter path, keep 
else return new // OK, the new one looks better. 

procedure FLUSH_AND_REBUILD (link_id) // Flush out stale paths from this neighbor. 
for each my_vector,d_addr 

if first_hop(my_vector[d_addr]) = addr[link_id] and new_vector[d_addr] = NULL 

then 
delete my_vector[d_addr] // Delete paths that are not still advertised. 

REBUILD_FORWARDING_TABLE (my_vector, addr) // Pass info to forwarder. 
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leader destination source type
 data checksum 
64 bits 48 bits 48 bits 16 bits 368 to 12,000 bits 32 bits 
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procedure ETHERNET_HANDLE (net_packet, length) 
destination ← net_packet.target_id 
if destination = my_station_id or destination = BROADCAST_ID then 

GIVE_TO_END_LAYER (net_packet.data, 

net_packet.end_protocol, 

net_packet.source_id)


else 
ignore packet 
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