
Boston 
Switch 

Los Angeles
Switch 

multiplexed link 

shared switches 

B1 

B2 

B3 

L1 

L2 

L3 
L4 

Principles of Computer System Design © Saltzer & Kaashoek 2009




5,624 bit times Time


8-bit frame 8-bit frame 8-bit frame


Principles of Computer System Design © Saltzer & Kaashoek 2009




D 

Personal Computer service 
A 

B 
multiplexed

link 
data crosses this

link in bursts and

can tolerate variable delay


C 

Principles of Computer System Design © Saltzer & Kaashoek 2009




frame


Time 
B D 

Guidance 4000 bits 750 bits 
information 

Principles of Computer System Design © Saltzer & Kaashoek 2009




A 
packet


Workstation
at network 
attachment 

Packet 
Switch Packet 

Switch 

Packet 
Switch 

Packet
Switch 

1 

2 3 

B 

Service at networkpoint A attachment 
point B 

B 

Principles of Computer System Design © Saltzer & Kaashoek 2009




------------
maximum


tolerable delay
average 1
queuing 1 – ρdelay 

1 

100%0 Utilization, r 
rmax 

Principles of Computer System Design © Saltzer & Kaashoek 2009




send request,
set timer 

receive response,
reset timer 

send request,

set timer


timer expires,
resend request,
set new timer 

receive response,
reset timer 

A B


request 1 time 

response 1 

X 

request 2 overloadedX 
forwarder 
discards 
request
packet. 

request 2’ 

response 2’ 
X 

Principles of Computer System Design © Saltzer & Kaashoek 2009




A 
send request,


set timer


timer expires,

resend request,

set new timer 

receive response, Xreset timer 

request 3 

X 
request 3

response 3’ 

’ 

B 

overloaded forwarder

discards response 3


duplicate arrives at B

B sends response 3’


Principles of Computer System Design © Saltzer & Kaashoek 2009




A 
send request,

set timer 

timer expires,
resend 
receive Xresponse,


reset timer


receive
duplicate
response 

request 4 

request 4’ 

response 4 

response 4’ 

B 

packet containing response
gets delayed 

duplicate arrives at B
B sends response 4’ 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Application characteristics


isochronous 

(e.g., telephone


network)


Network

Type


asynchronous

(e.g., Internet)


Continuous 

stream 


(e.g., interactive

voice)


(hard-edged)wastes
good match either acceptscapacity
 or blocks call


(gradual)

variable latency 1 variable delay

good match
upsets 2 discards data 
application 3 rate adaptation 

Bursts of data 
(most 

computer-to-
computer data) 

Response

to load 


variations


Principles of Computer System Design © Saltzer & Kaashoek 2009




Networks encounter a vast range of 

Data rates 
Propagation, transmission, queuing, and processing delays. 
Loads 
Numbers of users 

Networks traverse hostile environments 

Noise damages data

Links stop working


Best-effort networks have 

Variable delays

Variable transmission rates

Discarded packets

Duplicate packets

Maximum packet length

Reordered delivery 


Principles of Computer System Design © Saltzer & Kaashoek 2009




result ← FIRE (#, target, action)
 procedure FIRE (nmiss, where, react)

... 
return result 

Client stub
 Service stub 

proc: FIRE 

args: 3 

type: integer 
value: 2 

type: string 
value: “Lucifer” 

type: procedure 
value: EVADE 

Prepare
request
message.
Send to 
service 

Receive 
request
message.
Call 
requested
procedure.
Prepare 
response
message.
Send to client. 

response: 

acknowledgment 

type: string 
value: “destroyed” 

request: 

Wait for 
response. 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Main program 

RPC client stub 

application protocol


presentation protocol


called procedure 

RPC service stub 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Main program application protocol 

fire (return)
(return) fire 

presentation protocol 

called procedure 

RPC service stub 

Client network
package 

RPC client stub 

Service network
package 

send_send_ receive_ receive_
 messagemessage message message 

transport protocol

Principles of Computer System Design © Saltzer & Kaashoek 2009




Layer One A B C D 

Layer Two J K L 

Layer Three X Y Z 

Principles of Computer System Design © Saltzer & Kaashoek 2009




DATA 

LINK_SEND (pkt, link2) NETWORK_HANDLE


A B 

DATA LH LT 
Link
Layer 

link 2link 1Link

Layer
 link link


protocol
protocol 

C


Link

Layer


Principles of Computer System Design © Saltzer & Kaashoek 2009




NETWORK_SEND (segment

DATA 

, “IP”, nap_1197)


Network
Layer 

network


protocol

Network
Layer 

LINK_SEND (packet, link5) 
lINK_SEND (packet, link2

DATANT NH 

) NETWORK_HANDLE 

Link
Layer 

link5DATANT NH LHLT 

link 2 link

protocol


Link
Layer 

Link
Layer 

Principles of Computer System Design © Saltzer & Kaashoek 2009




FIRE (7, “Lucifer”, evade) 
DATA 

end-to-end


protocol


Network 
Layer 

End-to-End 
Layer 

DATAET EH 

(RPC) 

Network 
Layer 

DATANT NHET EH 

Link
Layer 

DATANT NH LHLT 

Link
Layer 

Link
Layer 

ET EH 

FIRE (7, “Lucifer”, evade)


End-to-End 
Layer
(RPC) 

Network
Layer 

Link
Layer 

Principles of Computer System Design © Saltzer & Kaashoek 2009




The end-to-end argument


The application knows best.


Principles of Computer System Design © Saltzer & Kaashoek 2009




Gnutella (network layer) 

Transport Protocol (end-to-end layer) 
Internet Protocol (network layer) 

dialed connection (end-to-end layer) 
telephone switch (network layer)

(link

physical wire (link layer) 

File Transfer Program (end-to-end layer) 

layer) 

layer)
(link

File transfer system 

Internet


dial-up

telephone

network


Principles of Computer System Design © Saltzer & Kaashoek 2009




data


A Bready 

acknowledge 

Principles of Computer System Design © Saltzer & Kaashoek 2009




V 
1
 0 1
 0
 1
 0 1
 0 1 

time


Principles of Computer System Design © Saltzer & Kaashoek 2009




A B 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure FRAME_TO_BIT (frame_data, length) 
ones_in_a_row = 0 
for i from 1 to length do // First send frame contents 

SEND_BIT (frame_data[i]); 
if frame_data[i] = 1 then


ones_in_a_row ← ones_in_a_row + 1;

if ones_in_a_row = 6 then


SEND_BIT (0); // Stuff a zero so that data doesn’t 
ones_in_a_row ← 0; // look like a framing marker 

else 
ones_in_a_row ← 0; 

for i from 1 to 7 do // Now send framing marker. 
SEND_BIT (1) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure BIT_TO_FRAME (rcvd_bit) 
ones_in_a_row integer initially 0 
if ones_in_a_row < 6 then 
bits_in_frame ← bits_in_frame + 1

frame_data[bits_in_frame] ← rcvd_bit

if rcvd_bit = 1 then ones_in_a_row ← ones_in_a_row + 1

else ones_in_a_row ← 0


else // This may be a seventh one-bit in a row, check it out. 
if rcvd_bit = 0 then 
ones_in_a_row ← 0 // Stuffed bit, don't use it. 

else // This is the end-of-frame marker 
LINK_RECEIVE (frame_data, (bits_in_frame - 6), link_id) 
bits_in_frame ← 0 
ones_in_a_row ← 0 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Network protocol 

Standard High
robustness 

protocolprotocol 
Experimental

protocol 

Network Layer


Link Layer 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Network Layer 

Link Layer 

Internet 
Protocol 

Appletalk
Protocol 

Path 
Vector 

Exchange
Protocol 

Address 
Resolution 

Protocol 

Standard High
robustness 

protocolprotocol 
Experimental

protocol 

Principles of Computer System Design © Saltzer & Kaashoek 2009




structure frame 
structure checked_contents 

bit_string net_protocol // multiplexing parameter 
bit_string payload // payload data 

bit_string checksum 

procedure LINK_SEND (data_buffer, link_identifier, link_protocol, network_protocol) 
frame instance outgoing_frame 
outgoing_frame.checked_contents.payload ← data_buffer 
outgoing_frame.checked_contents.net_protocol ← data_buffer.network_protocol 
frame_length ← LENGTH (data_buffer) + header_length 
outgoing_frame.checksum ← CHECKSUM (frame.checked_contents, frame_length) 
sendproc ← link_protocol[that_link.protocol] // Select link protocol. 
sendproc (outgoing_frame, frame_length, link_identifier) // Send frame. 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure LINK_RECEIVE (received_frame, length, link_id) 
frame instance received_frame 
if CHECKSUM (received_frame.checked_contents, length) = 

received_frame.checksum 
then // Pass good packets up to next layer. 
good_frame_count ← good_frame_count + 1; 
GIVE_TO_NETWORK_HANDLER (received_frame.checked_contents.payload, 

received_frame.checked_contents.net_protocol); 
else bad_frame_count ← bad_frame_count + 1 // Just count damaged frame. 

// Each network layer protocol handler must call SET_HANDLER before the first packet 
// for that protocol arrives… 

procedure SET_HANDLER (handler_procedure, handler_protocol) 
net_handler[handler_protocol] ← handler_procedure 

procedure GIVE_TO_NETWORK_HANDLER (received_packet, network_protocol) 
handler ← net_handler[network_protocol] 
if (handler ≠ NULL) call handler(received_packet, network_protocol) 
else unexpected_protocol_count ← unexpected_protocol_count + 1 

Principles of Computer System Design © Saltzer & Kaashoek 2009




network
attachment 

Network 

0107 

24 

16 

11 

39 

33 

35 

40 

41 

42 network 

point

address


Principles of Computer System Design © Saltzer & Kaashoek 2009




structure packet

bit_string source

bit_string destination

bit_string end_protocol

bit_string payload


procedure NETWORK_SEND (segment_buffer, destination, 
network_protocol, end_protocol) 

packet instance outgoing_packet 
outgoing_packet.payload ← segment_buffer 
outgoing_packet.end_protocol ← end_protocol 
outgoing_packet.source ← MY_NETWORK_ADDRESS 

outgoing_packet.destination ← destination 
NETWORK_HANDLE (outgoing_packet, net_protocol) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure NETWORK_HANDLE (net_packet, net_protocol) 
packet instance net_packet 
if net_packet.destination ≠ MY_NETWORK_ADDRESS then 

next_hop ← LOOKUP (net_packet.destination, forwarding_table)

LINK_SEND (net_packet, next_hop, link_protocol, net_protocol)


else 
GIVE_TO_END_LAYER (net_packet.payload, 

net_packet.end_protocol, net_packet.source) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Segment presented to
the network layer DATA 

Packet presented to
the link layer DATAend 

protocol 
source & 

destination 

frame check frameDATAend 
protocol 

Frame 
appearing
on the link 

source & 
destination sum 

network 
protocolmark mark 

1111111 97142 1111111“Fire”RPCExample 41 —> 24 55316IP 

Principles of Computer System Design © Saltzer & Kaashoek 2009




B 

4 

1

H

1


G

K

2 5
A 1


C 

1
1

3
source


4 2 3


destination 

F 

1


2 4 5

1 5


J

E
2

1

3 3
 1

1
4


D 

2


Principles of Computer System Design © Saltzer & Kaashoek 2009




B 

C 

A 1 1 H 4 

1 

3 

F 5 
J 1 

2 
E 

destination link 

G 

K 

source 
1 

2 

D 

5 

3 
4 5 

1 

2 

2 

3
4 

1 

2 

31 

1 

1 

4 

destination 

A end-layer
all other 1 

Principles of Computer System Design © Saltzer & Kaashoek 2009




destination link 

A 1 

C 
D 
E 
F 

H 
J 
K 

2 

3 

4 

2 
3 
4 

2 

4 

B 

G end-layer 

G 

K 

J 

source 
1 

2 3 

A 

B 

C 

D 

E 

F 

4 

5 

3 
4 5 

1 

2 

1 
2 

3
4 

1 

2 

35 

1 

1 

1 
1 

1 

12 

4 

H 

destination 

Principles of Computer System Design © Saltzer & Kaashoek 2009




C 

B 

A 
11 

4 

1

H

1


G

K 2

2 5


1

source
 3


4 2 3


destination1


4 5
F 51

J 

E

1
2

3 3
 1

4


2

1


D 

to path 

G < > 

Principles of Computer System Design © Saltzer & Kaashoek 2009




B 

A 
1 C 

1 

source 

destination 

F 

E 

D 

G 

K 

J 

1 

2 3 

4 

5 

4 5 

21 

3 1 

2 

1 
3

4 

1 

2 

351 
1 

12 

4 

H 

From A, From H, From J, From K,

via link 1 via link 2: via link 3: via link 4: 

to path to path to path to path 
A < > H < > J < > K < > 

Principles of Computer System Design © Saltzer & Kaashoek 2009




B 

A 
11 

1
 C

D

4 

1 

H
G

K

2

3
42 

2 5


1

source
 3

4 3 

1 destination 

5F 51 
J	

E

1
2

3 1
4 

2
1 

path vector 	 forwarding table 
to 
A
G
H
J
K 

path 	 to 
<A>	 A 
< > G
<H> H
<J> J
<K> K


link


1

end-layer


2

3

4


Principles of Computer System Design © Saltzer & Kaashoek 2009




G 

K 

J 

source 
1 

2 3 

D 
F 

4 

5 

3 
4 5 

1 

2 

1 
2 

3
4 

1 

2 

35 

1 

1 

1 

1 

1 

4 

H 

destination 

B 

C 

1A 

2 
E 

From A, From H, From J, From K,
via link 1 via link 2: via link 3: via link 4: 
to path to path to path to path 
A < > B <D> E<B> D <E>
G <G> C <C> E <E> F <F>G <G> G <G> G <G>H < > H <H> H <H>J <J> J < > <J>K <K> K <K> K

J
< > 

Principles of Computer System Design © Saltzer & Kaashoek 2009




forwarding tablepath vector 

G 

K 

J 

source 
1 

2 3 

A 

B 

C 

D 

E 

F 

4 

5 

3 
4 5 

1 

2 

1 
2 

3
4 

1 

2 

35 

1 

1 

1 
1 

1 

12 

4 

H 

destination 

to


A

B
C
D
E
F
G
H
J
K


path 

<A>


<H, B>
<H, C>
<J, D>
<J, E>
<K, F>


< >

<H>

<J>

<K>


to


A
B
C
D
E
F
G
H
J
K 

link


1

2

2

3

3

4


end-layer

2

3

4


Principles of Computer System Design © Saltzer & Kaashoek 2009




// Maintain routing and forwarding tables. 

vector associative array // vector[d_addr] contains path to destination d_addr 
neighbor_vector instance of vector // A path vector received from some neighbor 
my_vector instance of vector // My current path vector. 
addr associative array // addr[j] is the address of the network attachment 

// point at the other end of link j. 
// my_addr is address of my network attachment point. 
// A path is a parsable list of addresses, e.g. {a,b,c,d} 

procedure main() // Initialize, then start advertising. 
SET_TYPE_HANDLER (HANDLE_ADVERTISEMENT, exchange_protocol) 
clear my_vector; // Listen for advertisements 
do occasionally // and advertise my paths 

for each j in link_ids do // to all of my neighbors. 
status ← SEND_PATH_VECTOR (j, my_addr, my_vector, exch_protocol) 
if status ≠ 0 then // If the link was down, 

clear new_vector // forget about any paths 
FLUSH_AND_REBUILD (j) // that start with that link. 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure HANDLE_ADVERTISEMENT (advt, link_id) // Called when an advt arrives. 
addr[link_id] ← GET_SOURCE (advt) // Extract neighbor’s address 
neighbor_vector ← GET_PATH_VECTOR (advt) // and path vector. 
for each neighbor_vector.d_addr do // Look for better paths. 
new_path ←{addr[link_id], neighbor_vector[d_addr]} // Build potential path. 
if my_addr is not in new_path then // Skip it if I’m in it. 

if my_vector[d_addr] = NULL) then // Is it a new destination? 
my_vector[d_addr] ← new_path // Yes, add this one. 

else // Not new; if better, use it. 
my_vector[d_addr] ← SELECT_PATH (new_path, my_vector[d_addr]) 

FLUSH_AND_REBUILD (link_id) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure SELECT_PATH (new, old) // Decide if new path is better than old one. 
if first_hop(new) = first_hop(old) then return new // Update any path we were 

// already using. 
else if length(new) ≥ length(old) then return old // We know a shorter path, keep 
else return new // OK, the new one looks better. 

procedure FLUSH_AND_REBUILD (link_id) // Flush out stale paths from this neighbor. 
for each my_vector,d_addr 

if first_hop(my_vector[d_addr]) = addr[link_id] and new_vector[d_addr] = NULL 

then 
delete my_vector[d_addr] // Delete paths that are not still advertised. 

REBUILD_FORWARDING_TABLE (my_vector, addr) // Pass info to forwarder. 

Principles of Computer System Design © Saltzer & Kaashoek 2009




region R1 

to 

region R2R1.B 

R3.C 

R1.C 

32 

R1.D 

1 
R1.A forwarding table in R1.B


region forwarding local forwarding

section section 

R1
R2
R3
R4 

region R3 
region R4 

link to


local R1.A
1 R1.B
1 R1.C
3 R1.D 

link


1

end-layer


2

3


Principles of Computer System Design © Saltzer & Kaashoek 2009




sender 
send first segment 

receive ACK,
send second segment 

receive ACK,
send third segment 

(repeat N times) 

Done. 

segment 1 

segment 2 
ACK 1 

ACK 2 

3 •

•

• N 

ACK N 

receiver 
time 

accept segment 1 

accept segment 2 

accept segment N 

Principles of Computer System Design © Saltzer & Kaashoek 2009




sender

send segment 1

send segment 2

send segment 3


receive ACK 1

receive ACK 2


(repeat N times) 

receive ACK N, done. 

segment 1 

ack 1 

2 

ack N 

ack 2 

3 

• 
• 

N 
• 

receiver 

time 

acknowledge segment 1

acknowledge segment 2


acknowledge segment N 

Principles of Computer System Design © Saltzer & Kaashoek 2009




receive permission,
send segment 1
send segment 2

send segment 3

send segment 4


receive ACK 1

receive ACK 2

receive ACK 3

receive ACK 4,


wait … 
receive permission,


send segment 5

send segment 6


sender receiver 

segment #1 
#2 

ack # 2 

#3 

may I send? 

yes, 4 segments 

send 4 more 

segment #5 
#6 

• 
• 
• 

ack # 1 

ack # 3 
ack # 4 

#4 

time 
receive request,
open a 4-segment
window 

buffer segment 1

buffer segment 2

buffer segment 3

buffer segment 4


finished processing
segments 1–4, reopen
the window 

buffer segment 5

buffer segment 6


Principles of Computer System Design © Saltzer & Kaashoek 2009




useful

work

done


unlimited resource 

limited resource
with no waste 

congestion
collapse 

capacity
of a limited 
resource 

offered load


Principles of Computer System Design © Saltzer & Kaashoek 2009




duplicate acknowledgment
received


decrease 
additive

increase

multiplicative


delay
Window


size


slow start,
again

timer
expires,
stop sending 

slow start 

Time


Principles of Computer System Design © Saltzer & Kaashoek 2009




leader destination source type
 data checksum 
64 bits 48 bits 48 bits 16 bits 368 to 12,000 bits 32 bits 

Principles of Computer System Design © Saltzer & Kaashoek 2009




Station 
Identifier
(Ethernet

17 24 12 05 19 Address) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




procedure ETHERNET_HANDLE (net_packet, length) 
destination ← net_packet.target_id 
if destination = my_station_id or destination = BROADCAST_ID then 

GIVE_TO_END_LAYER (net_packet.data, 

net_packet.end_protocol, 

net_packet.source_id)


else 
ignore packet 

Principles of Computer System Design © Saltzer & Kaashoek 2009




upper-layer network address 

Ethernet station identifier 

link identifier 

Ethernet 

server routerwork 
station 

work 
station 

work 
station 

work 
station 

1 61111 
17 18 14 22 1915 

L M N P Q K 
1 

… 
2 
3
4 
5 

G 

H 
J 

E 

F 

Principles of Computer System Design © Saltzer & Kaashoek 2009




upper-layer network address 
link identifier G 

L M N P 
work

station

1

Q K 
H 
J 

server 
work 

station station station 
work work 

1 111 E 
17 15 18 14 22 19 

FEthernet

Ethernet station identifier


router 

6 

1 

… 
2 
3
4 
5 

internet

address


M 
N 
P 
Q
K 
E 

Ethernet/

station


enet/15
enet/18
enet/14
enet/22
enet/19
enet/19 

Principles of Computer System Design © Saltzer & Kaashoek 2009




upper-layer network address 
link identifier 

work
station

1

L M N P Q 

server 
work 

station 

11 

work 
station 

1 

work 
station 

1 
17 15 18
 14 22 

Ethernet 
Ethernet station identifier 

internet Ethernet/ internet 
address station	 address 

M enet/15	 M 
E 

K


router 

6 

1 

… 
2 
3
4 
5 

19 

Ethernet/
station 

enet/15

enet/19


G 

H 
J 

E 

F 

Principles of Computer System Design © Saltzer & Kaashoek 2009





