
24
Butterworth Filters

To illustrate some of the ideas developed in Lecture 23, we introduce in this
lecture a simple and particularly useful class of filters referred to as Butter-
worthfilters. Filters in this class are specified by two parameters, the cutoff
frequency and the filter order. The frequency response of these filters is
monotonic, and the sharpness of the transition from the passband to the stop-
band is dictated by the filter order. For continuous-time Butterworth filters,
the poles associated with the square of the magnitude of the frequency re-
sponse are equally distributed in angle on a circle in the s-plane, concentric
with the origin and having a radius equal to the cutoff frequency. When the
cutoff frequency and the filter order have been specified, the poles character-
izing the system function are readily obtained. Once the poles are specified, it
is straightforward to obtain the differential equation characterizing the filter.

In this lecture, we illustrate the design of a discrete-time filter through
the use of the impulse-invariant design procedure applied to a Butterworth
filter. The filter specifications are given in terms of the discrete-time frequen-
cy variable and then mapped to a corresponding set of specifications for the
continuous-time filter. A Butterworth filter meeting these specifications is de-
termined. The resulting continuous-time system function is then mapped to
the desired discrete-time system function.

A limitation on the use of impulse invariance as a design procedure for
discrete-time systems is the requirement that the continuous-time filter be
bandlimited to avoid aliasing. An alternative procedure, called the bilinear
transformation, corresponds to a mapping of the entire imaginary axis in the
s-plane to once around the unit circle. Consequently, there is no aliasing intro-
duced by this procedure. However, since the imaginary axis has infinite length
and the unit circle has a finite circumference, by necessity there must be a
nonlinear distortion in mapping between the two frequency axes. The use of
the bilinear transformation is therefore limited to mapping filters that are ap-
proximately piecewise constant. For filters of this type, the inherent nonlinear
distortion in the frequency axis is easily accommodated by prewarping the
critical frequencies (e.g., passband edge and stopband edge) prior to carrying
out the design of the associated continuous-time system. This procedure is il-
lustrated with the design of a Butterworth filter.

Suggested Reading
Section 6.5, The Class of Butterworth Frequency-Selective Filters, pages 422-

428

Section 9.7.3, Butterworth Filters, pages 611-614
Section 10.8.3, The Bilinear Transformation, pages 665-667
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The square of the
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Transparencies 24.3
and 24.4 show a pole-
zero plot associated
with the Butterworth
filter. Shown here is
the pole-zero pattern
for the square of the
magnitude of the
frequency response
for Butterworth filters.
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The pole-zero plot
for the system
function for a
Butterworth filter.
Since we restrict B(s)
to correspond to a
stable, causal filter, its
poles must all be in
the left half of the
s-plane.
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Specifications on a
discrete-time filter to
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Butterworth filter
using impulse
invariance.
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Pole-zero plot
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Butterworth filter to
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filter and a summary
of the steps in the
procedure.
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Frequency response of
the discrete-time
Butterworth filter
designed using
impulse invariance.
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The bilinear
transformation for
mapping from
continuous-time to
discrete-time filters.
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Mapping from the
continuous-time
frequency axis to
the discrete-time
frequency axis
resulting from
the bilinear
transformation.
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Illustration of the
effect of the bilinear
transformation on the
approximation to a
lowpass filter.
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Determination of the
parameters for a
Butterworth filter to
be mapped to a
discrete-time filter
with the specifications
in Transparency 24.6.
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The pole-zero plot
associated with the
squared magnitude
function for the
desired Butterworth
filter and the steps
involved in the
determination of the
discrete-time filter.
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Frequency response
for the discrete-time
filter obtained by
mapping a
Butterworth filter
to a digital filter
through the bilinear
transformation.

1.2

1.0

.8

.6

.4

.2

0

0

-10
-20
-30

-40

-50

-60
-70
-80

.67r .87r.21r



Signals and Systems
24-10

TRANSPARENCY
24.15
Comparison of the
frequency responses
of digital filters
obtained through
impulse invariance
and through the
bilinear trans-
formation.
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