10 Discrete-Time Fourier Series

Solutions to

Recommended Problems

S10.1

The output of a discrete-time linear, time-invariant system is given by

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

where $h[n]$ is the impulse response and $x[n]$ is the input. By substitution, we have the following.
(a) $y[n]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} e^{j \pi(n-k)}=e^{j \pi n} \sum_{k=0}^{\infty}\left(\frac{e^{-j \pi}}{2}\right)^{k}$

$$
=\frac{e^{j \pi n}}{1-\frac{1}{2} e^{-j \pi}}=\frac{2}{3}(-1)^{n}
$$

(b) $y[n]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} e^{j[x(n-k) / 4]}=e^{j(\pi n / 4)} \sum_{k=0}^{\infty}\left[\frac{e^{-j(\pi / 4)}}{2}\right]^{k}$

$$
=\frac{e^{j(\pi n / 4)}}{1-\frac{1}{2} e^{-j(\pi / 4)}}
$$

(c) $y[n]=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}\left[\frac{1}{2} e^{j(\pi / 8)} e^{j[\pi(n-k) / 4)]}+\frac{1}{2} e^{-j(\pi / 8)} e^{-j[\pi(n-k) / 4]}\right]$, Euler's relation

$$
\begin{aligned}
& =\frac{1}{2} e^{j(\pi / 8)} e^{j(\pi n / 4)} \sum_{k=0}^{\infty}\left[\frac{e^{-j(\pi / 4)}}{2}\right]^{k}+\frac{1}{2} e^{-j(\pi / 8)} e^{-j(\pi n / 4)} \sum_{k=0}^{\infty}\left[\frac{e^{j(\pi / 4)}}{2}\right]^{k} \\
& =\frac{\frac{1}{2} e^{j(\pi / 8)+(\pi n / 4)]}}{1-\frac{1}{2} e^{-j(\pi / 4)}}+\frac{\frac{1}{2} e^{-j(\pi / 8)+(\pi n / 4)]}}{1-\frac{1}{2} e^{j(\pi / 4)}} \\
& =\frac{\cos \left(\frac{\pi}{4} n+\frac{\pi}{8}\right)-\frac{1}{2} \cos \left(\frac{\pi}{4} n+\frac{3 \pi}{8}\right)}{\frac{5}{4}-\cos \left(\frac{\pi}{4}\right)}
\end{aligned}
$$

$\mathbf{S 1 0 . 2}$
(a) $\tilde{x}_{1}[n]=1+\sin \left(\frac{2 \pi n}{10}\right)$

To find the period of $\tilde{x}_{1}[n]$, we set $\tilde{x}_{1}[n]=\tilde{x}_{1}[n+N]$ and determine N. Thus

$$
\begin{aligned}
1+\sin \left(\frac{2 \pi n}{10}\right) & =1+\sin \left[\frac{2 \pi}{10}(n+N)\right] \\
& =1+\sin \left(\frac{2 \pi}{10} n+\frac{2 \pi}{10} N\right)
\end{aligned}
$$

Since

$$
\sin \left(\frac{2 \pi}{10} n+2 \pi\right)=\sin \left(\frac{2 \pi}{10} n\right)
$$

the period of $\tilde{x}_{1}[n]$ is 10 . Similarly, setting $\tilde{x}_{2}[n]=\tilde{x}_{2}[n+N]$, we have

$$
\begin{aligned}
1+\sin \left(\frac{20 \pi}{12} n+\frac{\pi}{2}\right) & =1+\sin \left[\frac{20 \pi}{12}(n+N)+\frac{\pi}{2}\right] \\
& =1+\sin \left(\frac{20 \pi}{12} n+\frac{\pi}{2}+\frac{20 \pi}{12} N\right)
\end{aligned}
$$

Hence, for $\frac{20}{12} \pi N$ to be an integer multiple of $2 \pi, N$ must be 6 .
(b) $\tilde{x}_{1}[n]=1+\sin \left(\frac{2 \pi n}{10}\right)$

Using Euler's relation, we have

$$
\begin{equation*}
x_{1}[n]=1+\frac{1}{2 j} e^{j(2 \pi / 10) n}-\frac{1}{2 j} e^{-j(2 \pi / 10) n} \tag{S10.2-1}
\end{equation*}
$$

Note that the Fourier synthesis equation is given by

$$
\tilde{x}_{1}[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n}
$$

where $N=10$. Hence, by inspection of eq. (S10.2-1), we see that

$$
\begin{aligned}
& a_{0}=1, \\
& a_{11}=\frac{1}{2 j}, \\
& a_{1-1}=\frac{-1}{2 j} \\
& a_{1 k}=0, \\
& \\
& 2 \leq k \leq 8 \\
&-8 \leq k \leq-2
\end{aligned}
$$

Similarly

$$
\tilde{x}_{2}[n]=1+\frac{1}{2 j} e^{j(\pi / 2)} e^{j(20 \pi / 12) n}-\frac{1}{2 j} e^{-j(\pi / 2)} e^{-j(20 \pi / 12) n}
$$

Therefore, $N=12$.

$$
\begin{gathered}
a_{20}=1, \quad a_{2-1}=-\frac{e^{-j(\pi / 2)}}{2 j}=\frac{1}{2}, \quad a_{21}=\frac{1}{2 j} e^{j(\pi / 2)}=\frac{1}{2}, \quad \text { and } \\
a_{2 \pm 2}, \ldots, a_{2 \pm 11}=0
\end{gathered}
$$

(c) The sequence $a_{1 k}$ is periodic with period 10 and $a_{2 k}$ is periodic with period 12 .

The Fourier series coefficients can be expressed as the samples of the envelope

$$
\begin{aligned}
a_{k} & =\left.\frac{1}{N} \cdot \frac{\sin \left[\left(2 N_{1}+1\right) \Omega / 2\right]}{\sin (\Omega / 2)}\right|_{\Omega=2 \pi k / N} & & \text { where } N_{1}=1 \text { (see Example } 5.3 \text { on } \\
& =\left.\frac{1}{N} \cdot \frac{\sin (3 \Omega / 2)}{\sin (\Omega / 2)}\right|_{\Omega=2 \pi k / N} & &
\end{aligned}
$$

(a) For $N=6$,

$$
a_{k}=\frac{1}{6} \frac{\sin \left[\frac{3}{2}\left(\frac{2 \pi k}{6}\right)\right]}{\sin \left[\frac{1}{2}\left(\frac{2 \pi k}{6}\right)\right]}=\frac{1}{6} \frac{\sin \left(\frac{\pi k}{2}\right)}{\sin \left(\frac{\pi k}{6}\right)}
$$

(b) For $N=12$,

$$
a_{k}=\frac{1}{12} \frac{\sin \left[\frac{3}{2}\left(\frac{2 \pi k}{12}\right)\right]}{\sin \left[\frac{1}{2}\left(\frac{2 \pi k}{12}\right)\right]}=\frac{1}{12} \frac{\sin \left(\frac{\pi k}{4}\right)}{\sin \left(\frac{\pi k}{12}\right)}
$$

(c) For $N=60$,

$$
a_{k}=\frac{1}{60} \frac{\sin \left[\frac{3}{2}\left(\frac{2 \pi k}{60}\right)\right]}{\sin \left[\frac{1}{2}\left(\frac{2 \pi k}{60}\right)\right]}=\frac{1}{60} \frac{\sin \left(\frac{\pi k}{20}\right)}{\sin \left(\frac{\pi k}{60}\right)}
$$

S10.4

(a) The discrete-time Fourier transform of the given sequence is

$$
\begin{aligned}
X(\Omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \\
& =\frac{1}{2} e^{j \Omega}+1+\frac{1}{2} e^{-j \Omega} \\
& =1+\cos \Omega
\end{aligned}
$$

$X(\Omega)$ is sketched in Figure S 10.4 .

Figure S10.4
(b) The first sequence can be thought of as

$$
\tilde{y}_{1}[n]=x[n] *\left[\sum_{k=-\infty}^{\infty} \delta[n-3 k]\right]
$$

Hence

$$
Y_{1}(\Omega)=X(\Omega) \frac{2 \pi}{3} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-\frac{2 \pi k}{3}\right)
$$

Therefore, the Fourier series of $y_{1}[n]$ is given by

$$
a_{k}=\frac{1}{2 \pi} Y_{1}\left(\frac{2 \pi}{3} k\right)=\frac{1}{3}\left(1+\cos \frac{2 \pi k}{3}\right), \quad \text { for all } k
$$

The second sequence is given by

$$
y_{2}[n]=x[n] *\left[\sum_{k=-\infty}^{\infty} \delta[n-5 k]\right]
$$

Similarly, the Fourier series of this sequence is given by

$$
a_{k}=\frac{1}{5}\left[1+\cos \left(\frac{2 \pi k}{5}\right)\right], \quad \text { for all } k
$$

This result can also be obtained by using the fact that the Fourier series coefficients are proportional to equally spaced samples of the discrete-time Fourier transform of one period (see Section 5.4.1 of the text, page 314).
(a) The given relation

$$
x[n]=\sum_{k=0}^{3} a_{k} e^{j k(2 \pi / 4) n}
$$

results in the following set of equations

$$
\begin{aligned}
& a_{0}+a_{1}+a_{2}+a_{3}=x[0]=1, \\
& a_{0}+a_{1} e^{j(\pi / 2)}+a_{2} e^{e^{2 \pi}}+a_{3} e^{j(3 / 2) \pi}=x[1]=0, \\
& a_{0}+a_{1} e^{j \pi}+a_{2} e^{j 2 \pi}+a_{3} e^{j 3 \pi}=x[2]=2, \\
& a_{0}+a_{1} e^{j(3 / 2) \pi}+a_{2} e^{j 3 \pi}+a_{3} e^{j(9 / 2) \pi}=x[3]=-1
\end{aligned}
$$

The preceding set of linear equations can be reduced to the form

$$
\begin{aligned}
a_{0}+a_{1}+a_{2}+a_{3} & =1, \\
a_{0}+j a_{1}-a_{2}-j a_{3} & =0, \\
a_{0}-a_{1}+a_{2}-a_{3} & =2, \\
a_{0}-j a_{1}-a_{2}+j a_{3} & =-1
\end{aligned}
$$

Solving the resulting equations, we get

$$
\begin{equation*}
a_{0}=\frac{1}{2}, \quad a_{1}=-\frac{1+j}{4}, \quad a_{2}=+1, \quad a_{3}=-\frac{1-j}{4} \tag{S10.5-1}
\end{equation*}
$$

By the discrete-time Fourier series analysis equation, we obtain

$$
a_{k}=\frac{1}{4}\left[1+2 e^{-j \pi k}-e^{-j(3 \pi k / 2)}\right],
$$

which is the same as eq. (S10.5-1) for $0 \leq k \leq 3$.
(a) $a_{k}=a_{k+10}$ for all k is true since $\tilde{x}[n]$ is periodic with period 10 .
(b) $a_{k}=a_{-k}$ for all k is false since $\tilde{x}[n]$ is not even.
(c) $a_{k} e^{j k(2 \pi / 5)}$ is real. This statement is true because it would correspond to the Fourier series of $\tilde{x}[n+2]$, which is a purely real and even sequence.
(d) $a_{0}=0$ is true since the sum of the values of $\tilde{x}[n]$ over one period is zero.

Solutions to Optional Problems

S10.7

The Fourier series coefficients of $x[n$, which is periodic with period N, are given by

$$
a_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k(2 \pi / N) n}
$$

For $N=8$,

$$
\begin{equation*}
a_{k}=\frac{1}{8} \sum_{n=0}^{7} x[n] e^{-j k(\pi / 4) n} \tag{S10.7-1}
\end{equation*}
$$

(a) We are given that

$$
\begin{align*}
& a_{k}=\cos \left(\frac{\pi k}{4}\right)+\sin \left(\frac{3 \pi k}{4}\right) \tag{S10.7-2}\\
& a_{k}=\frac{1}{2} e^{j(\pi k / 4)}+\frac{1}{2} e^{-j(\pi k / 4)}+\frac{1}{2 j} e^{j(3 \pi k / 4)}-\frac{1}{2 j} e^{-j(3 \pi k / 4)}
\end{align*}
$$

Hence, by comparing eqs. (S10.7-1) and (S10.7-2) we can immediately write

$$
x[n]=4 \delta[n-1]+4 \delta[n-7]-4 j \delta[n-3]+4 j \delta[n-5], \quad 0 \leq n \leq 7
$$

(b) $x[n]=\sum_{k=0}^{7} a_{k} e^{j k(2 \pi / 8)}=\sum_{k=0}^{7} a_{k} e^{j k(\pi / 4) n}$

$$
\begin{aligned}
& =\sum_{k=0}^{6}\left[\frac{1}{2 j} e^{j(k \pi / 3)}-\frac{1}{2 j} e^{-j(k \pi / 3)}\right] e^{j k(\pi / 4) n} \\
& =\frac{1}{2 j} \sum_{k=0}^{6} e^{j k \pi[(1 / 3)+(n / 4)]}-\frac{1}{2 j} \sum_{k=0}^{6} e^{-j k \pi[(1 / 3)-(n / 4)]} \\
& =\frac{1}{2 j} \frac{1-e^{j(7 \pi n / 4)+(7 \pi / 3)]}}{1-e^{j((\pi n / 4)+(\pi / 3)]}}-\frac{1}{2 j} \frac{1-e^{j(7 \pi n / 4)-(7 \pi / 3)]}}{1-e^{j[(\pi n / 4)-(\pi / 3) \mid}} \\
& =\frac{1}{2 j}\left[\frac{1-e^{j(7 \pi n / 4)+(7 \pi / 3)]}}{1-e^{j((\pi n / 4)+(\pi / 3)]}}-\frac{1-e^{j(7 \pi n / 4)-(7 \pi / 3)]}}{1-e^{j[(\pi n / 4)-(\pi / 3)]}}\right]
\end{aligned}
$$

(c) $x[n]=\sum_{k=0}^{7} a_{k} e^{j k(2 \pi / 8) n}=\sum_{k=0}^{7} a_{k} e^{j k(\pi / 4) n}$

$$
\begin{aligned}
& =1+e^{j(\pi / 4) n}+e^{j(3 \pi / 4) n}+e^{j \pi n}+e^{j(5 \pi / 4) n}+e^{j(7 \pi / 4) n} \\
& =1+(-1)^{n}+2 \cos \left(\frac{\pi}{4} n\right)+2 \cos \left(\frac{3 \pi}{4} n\right), \quad 0 \leq n \leq 7
\end{aligned}
$$

(d) Using an analysis similar to that in part (c), we find

$$
x[n]=2+2 \cos \left(\frac{\pi}{4} n\right)+\cos \left(\frac{\pi}{2} n>^{0}+\frac{1}{2} \cos \left(\frac{3 \pi}{4} n\right), \quad 0 \leq n \leq 7\right.
$$

$$
h[n]=\left(\frac{1}{2}\right)^{|n|}
$$

The discrete-time Fourier transform of $h[n]$ is

$$
\begin{aligned}
H(\Omega) & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} e^{-j \Omega n}+\sum_{n=-\infty}^{0}\left(\frac{1}{2}\right)^{-n} e^{-j \Omega n}-1 \\
& =\frac{1}{1-\frac{1}{2} e^{-j \Omega}}+\frac{1}{1-\frac{1}{2} e^{j \Omega}}-1 \\
& =\frac{3}{5-4 \cos \Omega}
\end{aligned}
$$

(a) (i) $\quad x[n]=\sin \left(\frac{3 \pi}{4} n\right)=\frac{1}{2 j} e^{j(3 \pi / 4) n}-\frac{1}{2 j} e^{-j(3 \pi / 4) n}$

The period of $x[n]$ is

$$
\sin \left(\frac{3 \pi}{4} n\right)=\sin \left[\frac{3 \pi}{4}(n+N)\right]
$$

Thus

$$
\sin \left(\frac{3 \pi}{4} n\right)=\sin \left(\frac{3 \pi}{4} n+\frac{3 \pi}{4} N\right)
$$

We set $3 \pi N / 4=2 \pi m$ to get $N=8(m=3)$. Hence, the period is 8 .

$$
x[n]=\sum_{k=0}^{7} a_{k} e^{j k(2 \pi / 8) n}
$$

Therefore,

$$
a_{3}=\frac{1}{2 j}=a_{5}^{*}
$$

All other coefficients a_{k} are zero. By the convolution property, the Fourier series representation of $y[n]$ is given by b_{k}, where

$$
b_{k}=\left.a_{k} H(\Omega)\right|_{\Omega=(2 \pi k) / 8}
$$

Thus

$$
\begin{aligned}
b_{3} & =\frac{1}{2 j} \frac{3}{5-4 \cos (3 \pi / 4)} \\
& =b_{5}^{*}
\end{aligned}
$$

All other b_{k} are zero in the range $0 \leq k \leq 7$.
(ii) $\tilde{x}[n]=\sum_{k=-\infty}^{\infty} \delta[n-4 k]$

The Fourier series of $\tilde{x}[n]$ is

$$
a_{k}=\frac{1}{4} \sum_{n=0}^{3} \tilde{x}[n] e^{-j k(2 \pi / 4) n}=\frac{1}{4}, \quad \text { for all } k
$$

And the Fourier series of $\tilde{y}[n]$ is

$$
\begin{aligned}
b_{k} & =\left.a_{k} H(\Omega)\right|_{\Omega=\pi k / 2} \\
& =\frac{1}{4} \frac{3}{5-4 \cos [(\pi / 2) k]}=\frac{3}{20} \quad \text { for all } k
\end{aligned}
$$

(iii) The Fourier series of $\tilde{x}[n]$ is

$$
a_{k}=\frac{1}{6}\left[1+2 \cos \left(\frac{\pi}{3} k\right)\right], \quad 0 \leq k \leq 5
$$

and the Fourier series of $\hat{y}[n]$ is

$$
\begin{aligned}
b_{k} & =\left.a_{k} H(\Omega)\right|_{\Omega=(\pi / 3) k} \\
& =\frac{1}{6}\left[1+2 \cos \left(\frac{\pi}{3} k\right)\right] \frac{3}{5-4 \cos [(\pi / 3) k]}
\end{aligned}
$$

(iv) $x[n]=j^{n}+(-1)^{n}$

The period of $\tilde{x}[n]$ is $4 . x[n]$ can be rewritten as

$$
\begin{aligned}
x[n] & \left.=\left[e^{j(\pi / 2}\right)\right]^{n}+\left(e^{j \pi}\right)^{n} \\
& =\sum_{k=0}^{3} a_{k} e^{j k(2 \pi / 4) n}
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
a_{0}=0, & a_{1}=1, \\
a_{2}=1, & a_{3}=0
\end{array}
$$

Therefore, $b_{0}=b_{3}=0$ and

$$
\begin{aligned}
& b_{1}=\frac{3}{5-4 \cos (\pi / 2)}=\frac{3}{5}, \\
& b_{2}=\frac{3}{5-4 \cos \pi}=\frac{3}{9}
\end{aligned}
$$

(b) $h[n]$ is sketched in Figure S10.8.

Figure S10.8

$$
\begin{aligned}
& H(\Omega)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \Omega n}=-e^{j 2 \Omega}-e^{j \Omega}+1+e^{-j \Omega}+e^{-j 2 \Omega}, \\
& H(\Omega)=1-2 j \sin \Omega-2 j \sin 2 \Omega
\end{aligned}
$$

It follows from part (a):

$$
\begin{equation*}
b_{3}=\left.\frac{1}{2 j} H(\Omega)\right|_{\Omega=3 \pi / 4}=\frac{1}{2 j}-\sin \frac{3 \pi}{4}-\sin \frac{3 \pi}{2}=b_{5}^{*} \tag{i}
\end{equation*}
$$

All other coefficients b_{k} are zero, in the range $0 \leq k \leq 7$.

$$
\begin{aligned}
& \text { (ii) } \quad b_{k}=\left.\frac{1}{4} H(\Omega)\right|_{\Omega=\pi k / 2} \\
& =\frac{1}{4}-\frac{j}{2} \sin \frac{\pi k}{2}-\frac{j}{2} \sin \pi k=\frac{1}{4}-\frac{j}{2} \sin \frac{\pi k}{2} \\
& \text { (iii) } \quad b_{k}=\left.\frac{1}{6}\left[1+2 \cos \left(\frac{\pi}{3} k\right)\right] H(\Omega)\right|_{\Omega=\pi k / 3} \\
& \text { (iv) } b_{0}=0 \text {, } \\
& b_{1}=\left.H(\Omega)\right|_{\Omega=\pi / 2}=1-2 j, \\
& b_{2}=\left.H(\Omega)\right|_{\Omega=\pi}=1, \\
& b_{3}=0
\end{aligned}
$$

S10.9
$x[n] \stackrel{7}{\longleftrightarrow} a_{k}$
(a) $x\left[n-n_{0}\right] \stackrel{\mathcal{F}}{\longleftrightarrow} a_{k} e^{-j k(2 \pi / N) n_{0}}$
(b) $x[n]-x[n-1] \stackrel{\mathcal{F}}{\longrightarrow} a_{k}\left[1-e^{-j(2 \pi k / N)}\right]$
(c) $x[n]-x\left[n-\frac{N}{2}\right] \stackrel{\mathcal{F}}{\longrightarrow} a_{k}\left(1-e^{-j k \pi}\right), \quad N$ even

$$
= \begin{cases}0, & k \text { even }, \\ 2 a_{k}, & k \text { odd }\end{cases}
$$

(d) $x[n]+x\left[n+\frac{N}{2}\right], \quad$ period $\frac{N}{2}$

$$
\begin{aligned}
\hat{a}_{k} & =\frac{2}{N} \sum_{n=0}^{(N / 2)-1}\left[x[n]+x\left[n+\frac{N}{2}\right]\right] e^{-j k(4 \pi / N) n} \\
& =2 a_{2 k}
\end{aligned}
$$

(e) $\hat{a}_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x^{*}[-n] e^{-j k(2 \pi / N) n}$,

$$
\begin{aligned}
\hat{a}_{k}^{*} & =\frac{1}{N} \sum_{n=0}^{N-1} x[-n] e^{j k(2 \pi / N) n} \\
& =\frac{1}{N} \sum_{n=0}^{-N+1} x[n] e^{-j k(2 \pi / N) n}=a_{k}
\end{aligned}
$$

Therefore, $\hat{a}_{k}=a_{k}^{*}$.

S10.10

$$
\text { (a) } \begin{aligned}
\tilde{w}[n] & =\tilde{x}[n]+\tilde{y}[n], \\
\tilde{w}[n+N M] & =\tilde{x}[n+N M]+\tilde{y}[n+N M] \\
& =\tilde{x}[n]+\tilde{y}[n] \\
& =\tilde{w}[n]
\end{aligned}
$$

Hence, $\tilde{w}[n]$ is periodic with period $N M$.
(b) $c_{k}=\frac{1}{N M} \sum_{n=0}^{N M-1} \tilde{w}[n] e^{-j k(2 \pi / N M) n}=\frac{1}{N M} \sum_{n=0}^{N M-1}[\tilde{x}[n]+\tilde{y}[n]] e^{-j k(2 \pi / N M) n}$

$$
=\frac{1}{N M} \sum_{n=0}^{N M-1} \tilde{x}[n] e^{-j k(2 \pi / N M) n}+\frac{1}{N M} \sum_{n=0}^{N M=1} \tilde{y}[n] e^{-j k(2 \pi / N M) n}
$$

$$
=\frac{1}{N M} \sum_{n=0}^{N-1} \tilde{x}[n] \sum_{l=0}^{M-1} e^{-j k(2 \pi / N M)(n+l N)}+\frac{1}{N M} \sum_{n=0}^{M-1} \tilde{y}[n] \sum_{l=0}^{N-1} e^{j k(2 \pi / N M)(n+l M)}
$$

$$
= \begin{cases}\frac{1}{N} a_{k / M}+\frac{1}{M} b_{k / N}, & \text { for } k \text { a multiple of } M \text { and } N, \\ \frac{1}{N} a_{k / M}, & \text { for } k \text { a multiple of } M, \\ \frac{1}{M} b_{k / N}, & \text { for } k \text { a multiple of } N, \\ 0, & \text { otherwise }\end{cases}
$$

(a) $\tilde{x}[n]=\sin \left[\frac{\pi(n-1)}{4}\right]$

To find the period, we set $\tilde{x}[n]=\tilde{x}[n+N]$. Thus,

$$
\sin \left[\frac{\pi(n-1)}{4}\right]=\sin \left[\frac{\pi(n+N-1)}{4}\right]=\sin \left[\frac{\pi(n-1)}{4}+\frac{\pi N}{4}\right]
$$

Let $(\pi N) / 4=2 \pi i$, when i is an integer. Then $N=8$ and

$$
\begin{aligned}
\tilde{x}[n] & =\frac{1}{2 j} e^{j \mid x(n-1) / 4]}-\frac{1}{2 j} e^{-j \mid x(n-1) / 4]} \\
& =\frac{1}{2 j} e^{-j(\pi / 4)} e^{j(\pi n / 4)}-\frac{1}{2 j} e^{j(\pi / 4)} e^{-j(\pi n / 4)}
\end{aligned}
$$

Therefore,

$$
a_{1}=\frac{e^{-j(x / 4)}}{2 j}, \quad a_{7}=-\frac{e^{j(x / 4)}}{2 j}
$$

All other coefficients a_{k} are zero, in the range $0 \leq k \leq 7$. The magnitude and phase of a_{k} are plotted in Figure S10.11-1.

Figure S10.11-1
(b) The period $N=21$ and the Fourier series coefficients are

$$
a_{7}=a_{14}=\frac{1}{2}, \quad a_{3}=a_{18}^{*}=\frac{1}{2 j}
$$

The rest of the coefficients a_{k} are zero. The magnitude and phase of a_{k} are given in Figure S10.11-2.

(c) The period $N=8$.

$$
a_{3}=a_{5}^{*}=\frac{1}{2} e^{-j(\pi / 3)}
$$

The rest of the coefficients a_{k} are zero. The magnitude and phase of a_{k} are given in Figure S10.11-3.

Figure S10.11-3

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

