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Fourier Transform
Properties

The Fourier transform is a major cornerstone in the analysis and representa-
tion of signals and linear, time-invariant systems, and its elegance and impor-
tance cannot be overemphasized. Much of its usefulness stems directly from
the properties of the Fourier transform, which we discuss for the continuous-
time case in this lecture. Many of the Fourier transform properties might at
first appear to be simple (or perhaps not so simple) mathematical manipula-
tions of the Fourier transform analysis and synthesis equations. However, in
this and later lectures, as we discuss issues such as filtering, modulation, and
sampling, it should become increasingly clear that these properties all have
important interpretations and meaning in the context of signals and signal
processing.

The first property that we introduce in this lecture is the symmetry prop-
erty, specifically the fact that for time functions that are real-valued, the Four-
ier transform is conjugate symmetric, i.e., X(—w) = X*(w). From this it fol-
lows that the real part and the magnitude of the Fourier transform of real-
valued time functions are even functions of frequency and that the imaginary
part and phase are odd functions of frequency. Because of this property of
conjugate symmetry, in displaying or specifying the Fourier transform of a
real-valued time function it is necessary to display the transform only for
positive values of .

A second important property is that of time and frequency scaling, spe-
cifically that a linear expansion (or contraction) of the time axis in the time
domain has the effect in the frequency domain of a linear contraction (expan-
sion). In other words, linear scaling in time is reflected in an inverse scaling in
frequency. As we discuss and demonstrate in the lecture, we are all likely to
be somewhat familiar with this property from the shift in frequencies that oc-
curs when we slow down or speed up a tape recording. More generally, this is
one aspect of a broader set of issues relating to important trade-offs between
the time domain and frequency domain. As we will see in later lectures, for
example, it is often desirable to design signals that are both narrow in time
and narrow in frequency. The relationship between time and frequency scal-
ing is one indication that these are competing requirements; i.e., attempting

9-1



Signals and Systems

9-2

to make a signal narrower in time will typically have the effect of broadening
its Fourier transform.

Duality between the time and frequency domains is another important
property of Fourier transforms. This property relates to the fact that the anal-
ysis equation and synthesis equation look almost identical except for a factor
of 1/27 and the difference of a minus sign in the exponential in the integral. As
a consequence, if we know the Fourier transform of a specified time function,
then we also know the Fourier transform of a signal whose functional form is
the same as the form of this Fourier transform. Said another way, the Fourier
transform of the Fourier transform is proportional to the original signal re-
versed in time. One consequence of this is that whenever we evaluate one
transform pair we have another one for free. As another consequence, if we
have an effective and efficient algorithm or procedure for implementing or
calculating the Fourier transform of a signal, then exactly the same procedure
with only minor modification can be used to implement the inverse Fourier
transform. This is in fact very heavily exploited in discrete-time signal analy-
sis and processing, where explicit computation of the Fourier transform and
its inverse play an important role.

There are many other important properties of the Fourier transform,
such as Parseval’s relation, the time-shifting property, and the effects on the
Fourier transform of differentiation and integration in the time domain. The
time-shifting property identifies the fact that a linear displacement in time
corresponds to a linear phase factor in the frequency domain. This becomes
useful and important when we discuss filtering and the effects of the phase
characteristics of a filter in the time domain. The differentiation property for
Fourier transforms is very useful, as we see in this lecture, for analyzing sys-
tems represented by linear constant-coefficient differential equations. Also,
we should recognize from the differentiation property that differentiating in
the time domain has the effect of emphasizing high frequencies in the Fourier
transform. We recall in the discussion of the Fourier series that higher fre-
quencies tend to be associated with abrupt changes (for example, the step dis-
continuity in the square wave). In the time domain we recognize that differen-
tiation will emphasize these abrupt changes, and the differentiation property
states that, consistent with this result, the high frequencies are amplified in
relation to the low frequencies.

Two major properties that form the basis for a wide array of signal pro-
cessing systems are the convolution and modulation properties. According to
the convolution property, the Fourier transform maps convolution to multi-
plication; that is, the Fourier transform of the convolution of two time func-
tions is the product of their corresponding Fourier transforms. For the analy-
sis of linear, time-invariant systems, this is particularly useful because
through the use of the Fourier transform we can map the sometimes difficult
problem of evaluating a convolution to a simpler algebraic operation, namely
multiplication. Furthermore, the convolution property highlights the fact that
by decomposing a signal into a linear combination of complex exponentials,
which the Fourier transform does, we can interpret the effect of a linear, time-
invariant system as simply scaling the (complex) amplitudes of each of these
exponentials by a scale factor that is characteristic of the system. This “spec-
trum” of scale factors which the system applies is in fact the Fourier trans-
form of the system impulse response. This is the underlying basis for the con-
cept and implementation of filtering.

The final property that we present in this lecture is the modulation prop-
erty, which is the dual of the convolution property. According to the modula-
tion property, the Fourier transform of the product of two time functions is
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proportional to the convolution of their Fourier transforms. As we will see in
a later lecture, this simple property provides the basis for the understanding
and interpretation of amplitude modulation which is widely used in communi-
cation systems. Amplitude modulation also provides the basis for sampling,
which is the major bridge between continuous-time and discrete-time signal
processing and the foundation for many modern signal processing systems
using digital and other discrete-time technologies.

We will spend several lectures exploring further the ideas of filtering,
modulation, and sampling. Before doing so, however, we will first develop in
Lectures 10 and 11 the ideas of Fourier series and the Fourier transform for
the discrete-time case so that when we discuss filtering, modulation, and sam-
pling we can blend ideas and issues for both classes of signals and systems.

Suggested Reading

Section 4.6, Properties of the Continuous-Time Fourier Transform, pages
202-212

Section 4.7, The Convolution Property, pages 212-219
Section 6.0, Introduction, pages 397-401
Section 4.8, The Modulation Property, pages 219-222

Section 4.9, Tables of Fourier Properties and of Basic Fourier Transform and
Fourier Series Pairs, pages 223-225

Section 4.10, The Polar Representation of Continuous-Time Fourier Trans-
forms, pages 226232

Section 4.11.1, Calculation of Frequency and Impulse Responses for LTI Sys-
tems Characterized by Differential Equations, pages 232-235
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MODULATION PROPERTY
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