
22
The z-Transform

In Lecture 20, we developed the Laplace transform as a generalization of the
continuous-time Fourier transform. In this lecture, we introduce the corre-
sponding generalization of the discrete-time Fourier transform. The resulting
transform is referred to as the z-transform and is motivated in exactly the
same way as was the Laplace transform. For example, the discrete-time Four-
ier transform developed out of choosing complex exponentials as basic build-
ing blocks for signals because they are eigenfunctions of discrete-time LTI
systems. A more general class of eigenfunctions consists of signals of the
form z, where z is a general complex number. A representation of discrete-
time signals with these more general exponentials leads to the z-transform.

As with the Laplace transform and the continuous-time Fourier trans-
form, a close relationship exists between the z-transform and the discrete-
time Fourier transform. For z = ejn or, equivalently, for the magnitude of z
equal to unity, the z-transform reduces to the Fourier transform. More gener-
ally, the z-transform can be viewed as the Fourier transform of an exponen-
tially weighted sequence. Because of this exponential weighting, the z-trans-
form may converge for a given sequence even if the Fourier transform does
not. Consequently, the z-transform offers the possibility of transform analysis
for a broader class of signals and systems.

As with the Laplace transform, the z-transform of a signal has associated
with it both an algebraic expression and a range of values of z, referred to as
the region of convergence (ROC), for which this expression is valid. Two very
different sequences can have z-transforms with identical algebraic expres-
sions such that their z-transforms differ only in the ROC. Consequently, the
ROC is an important part of the specification of the z-transform.

Our principal interest in this and the following lectures is in signals for
which the z-transform is a ratio of polynomials in z or in z 1. Transforms of
this type are again conveniently described by the location of the poles (roots
of the denominator polynomial) and the zeros (roots of the numerator polyno-
mial) in the complex plane. The complex plane associated with the z-trans-
form is referred to as the z-plane. Of particular significance in the z-plane is
the circle of radius 1, concentric with the origin, referred to as the unit circle.
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Since this circle corresponds to the magnitude of z equal to unity, it is the con-
tour in the z-plane on which the z-transform reduces to the Fourier trans-
form. In contrast, for continuous time it is the imaginary axis in the s-plane on
which the Laplace transform reduces to the Fourier transform.

The pole-zero pattern in the z-plane specifies the algebraic expression
for the z-transform. In addition, the ROC must be indicated either implicitly or
explicitly. There are a number of properties of the ROC in relation to the poles
of the z-transform and in relation to characteristics of the signal in the time
domain that often imply the ROC. For example, if the sequence is known to be
right-sided, then the ROC must be the portion of the z-plane outside the circle
bounded by the outermost pole. This and other properties are discussed in de-
tail in the lecture.

Suggested Reading
Section 10.0, Introduction, page 629

Section 10.1, The z-Transform, pages 630-635

Section 10.2, The Region of Convergence for the z-Transform, pages 635-643

Section 10.3, The Inverse z-Transform, pages 643-646
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TRANSPARENCY
22.1
The z-plane and the
unit circle.

TRANSPARENCY
22.2
The z-transform and
associated pole-zero
plot for a right-sided
exponential sequence.
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TRANSPARENCY
22.3
The z-transform and
associated pole-zero
plot for a left-sided
exponential sequence.

TRANSPARENCY
22.4
Pole-zero plot for a
discrete-time under-
damped second-
order system
illustrating the
geometric determi-
nation of the Fourier
transform from the
pole-zero plot.
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22.5
Properties of the ROC
of the z-transform.

PROPERTIES OF THE REGION OF CONVERGENCE

. The ROC does not contain poles

. The ROC of X(z) consists of a ring in the
z-plane centered about the origin

. y7x[n][converges <=>

. x [n] finite duration =>

ROC includes the unit
circle in the z-plane

ROC is entire z-plane
with the possible
exception of z = 0 or
z = oo

TRANSPARENCY
22.6
Properties of the ROC
for a right-sided
sequence.

. Ix [n

N1 n

Sx [n] right-sided and IzI= r. is in ROC
=> all finite values of z for which iz I> r0
are in ROC

. x[n] right-sided and X(z) rational
=> ROC is outside the outermost pole

1. - -
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. x [n] left-sided and Iz |= ro is in ROC
=> all values of z for which 0 < Iz I < r0
will also be in ROC

. x[n] left-sided and X(z) rational
=> ROC inside the innermost pole

. x [n] two-sided and Iz I= r is in ROC
=> ROC is a ring in the z-plane which
includes the circle Iz|= rI

TRANSPARENCY
22.7
Properties of the ROC
of the z-transform for
a left-sided sequence
and for a two-sided
sequence.

TRANSPARENCY
22.8
Transparencies 22.8-
22.10 show ROCs for a
specified algebraic
expression for the z-
transform. Shown here
is the ROC if the
sequence is right-
sided.
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The ROC if the
sequence is left-sided.

z
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The ROC if the
sequence is two-sided.
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