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PROFESSOR: In the last lecture, we began the discussion of modulation. And in particular, what

we focused on, was the continuous time case. And in talking about continuous time

modulation, we've covered a number of topics. We talked about the properties and

analysis of modulation when we had a complex exponential carrier signal. We talked

about the properties and analysis in the case of a sinusoidal carrier. And in that

context and related to the application associated with communications, we talked

about synchronous modulation, asynchronous modulation and also the notion of

single side band modulation.

In the lecture today, there are two issues that I'd like to address, broad topics. One

is a parallel discussion, particularly, as associated with complex exponential and

sinusoidal modulation for discrete time signals. And the second is the introduction

and analysis of another kind of carriers, specifically a pulse kind of carrier in

continuous time leading to the notions of pulse amplitude modulation and,

eventually, a very powerful theorem and result called the sampling theorem.

Well, let me begin the lecture, though, focusing on the discrete time modulation to

essentially draw your attention to the fact that the analysis in discrete time very

much parallels the analysis in continuous time. Well, let's consider, in the discrete

time case, just as we had in continuous time, a signal modulating a carrier signal

and the resulting modulated signal is y of n. And it was in continuous time the

modulation property associated with the Fourier Transform that provided the basis

for the analysis. And exactly the same thing is true in the discrete time case.

In particular, what we have in discrete time, is the modulation property as it relates

to the Fourier Transform, which tells us that the Fourier Transform of the modulated

signal is the convolution of the Fourier Transform of the carrier and the Fourier
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Transform of the modulated signal. And the only real difference at issue here is that,

in the discrete time case, what we're talking about is a periodic convolution because

the specter, of course is periodic. Whereas, in the continuous time case, it was an

aperiodic convolution.

So let's parallel the discussion, and in particular, what we'll focus on is, first, a

complex exponential carrier and second a sinusoidal carrier. And we'll see how this

parallels our discussion in continuous time, and we'll make fairly brief reference as

we introduce the pulse carrier for continuous time. We'll make very brief reference

to the pulse carrier for discrete time indicating that, again, the analysis and discrete

time and continuous time is very parallel.

So let's, first, consider complex exponential and sinusoidal carriers for the discrete

time case, emphasizing the very strong parallel and similarity between discrete time

and continuous time. Well we have, once, again the modulation property. And the

modulation property tells us that the spectrum of the modulated signal is the

periodic convolution of the two spectra. And let's consider, for example, an input, or

modulating spectrum, as I've indicated here.

And since we want to consider, first of all, a complex exponential carrier, we'll

consider the case of c of n equal to e to the j omega sub cn. And let me stress, by

the way, as I did in the continuous time case, that I'll tend to suppress the phase

angle which, of course, can be associated with the carrier also.

All right, so we have, then, the spectrum of the modulated signal. The spectra, the

carrier signal, if this is the carrier, then it's spectrum is an impulse train, and that

impulse train, I've indicated here. And let me stress, also, that in the discrete time

case, of course, these spectra and all of the spectra involved, are periodic with a

period of 2 pi.

So this then is the spectrum of the carrier signal. This is the spectrum of the input

signal. The periodic convolution of these two is the spectrum the modulated signal.

And the result is, then, this spectrum shifted to a center frequency, which is the

carrier frequency omega sub c.
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So the result of modulation with a complex exponential is a straightforward shift of

the spectrum so that what occurred around zero frequency now occurs around the

frequency omega sub c.

Now, in the continuous time case, we demodulated, when we had a complex

exponential carrier, we demodulated by, essentially, just shifting the spectrum back.

And in fact, in the discrete time case, were able to do exactly the same thing. So if

we were to replace c of n which is either j omega sub cn by c of n equals e to the

minus j omega sub cn, the resulting spectra would be an impulse train, as I indicate

here, and the result of multiply y of n by that new carrier, in the frequency domain

as a convolution of these two, and it's relatively straightforward to verify that if you

convolve these with a periodic convolution, then that will get us back to the original

spectrum that we started with.

So what's happened in the discrete time case, with the complex exponential, is

exactly the same as in continuous time. Namely, we modulate that corresponds to

shifting the spectrum. We demodulate by multiplying by the complex conjugate of

the original modulated carrier and that shifts the spectrum back to where it was

originally.

OK. Now let's consider the case of a sinusoidal carrier in discrete time. And again,

things very much parallel what we saw in continuous time. And again, as we look at

the spectra, I will choose a phase angle of zero, mainly for notational and analytical

convenience.

So in this case, now, rather than a carrier signal, which is a single complex

exponential, it's now a sinusoidal carrier and the sinusoidal carrier is the sum of two

complex exponential. And so if we consider a modulated spectrum, that is the

spectrum of x of n, something of the type that I indicate here, and the spectrum of

the carrier, now, since the carrier is sinusoidal rather than a complex exponential

consists of two impulses, one at plus omega sub c and one at minus omega sub c,

convolving this spectrum with this spectrum gives us a replication of x of omega

around plus and minus omega sub c. And incidentally, with an amplitude change of
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a half.

So again, things have worked as they did in continuous time. In continuous time or

in discrete time, modulating with a sinusoidal carrier would correspond to a

replication of the spectrum around, plus the carrier frequency and a replication of

the spectrum around minus the carrier frequency, in both cases, as long as the

carrier frequency is large enough compared with the bandwidth of the signal so that

those two replication don't overlap, then it's reasonable to suppose that we should

be able to recover the original signal.

Well, in fact, to demodulate in the discrete time case, we would again follow very

much the strategy that we did in continuous time. In particular, let's consider

demodulating by taking the modulated signal and, again, putting that through a

modulator, again, with the carrier which is cosine omega sub cn. If we do that, we

have a demodulator or what will turn out to be part of a demodulator, as I indicate

here, the spectrum of the input signal is, as I had just developed, a replication of the

original spectrum around plus and minus omega sub c with an amplitude of a half.

When this is, again, convolved with the spectrum of the carrier, then we get a

replication of the original spectrum, first around zero frequency, as I indicate here,

and then around twice the carrier frequency and minus twice the carrier frequency.

And as long as the carrier frequency is large enough compared with the width of the

original signal, then, as you can see, by extracting this part of the spectrum with a

low pass filter, we can, in principle, recover the spectrum associated with the

original signal. And again, just as in continuous time, because this amplitude is a

half, we would want to choose, for scaling purposes, a low pass filter amplitude

which is 2 to compensate for this factor of a half.

So once again things work out basically the same way as they had in continuous

time. We have sinusoidal modulation which consists of using a sinusoidal carrier.

And we have the demodulator which consists of taking a modulated signal,

multiplying by the carrier, and then processing that with a low pass filter to extract

the portion of the spectrum, which is around zero frequency, as I indicate in the
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spectrum below and the result, then, that this low pass filter having a gain of 2 is

that we've recovered the original spectrum, x of omega, which is the spectrum that

we started with.

Now several other things to stress. This is a fairly quick tour through sinusoidal

modulation for discrete time. There are very similar issues that arise in the discrete

time case in terms of having phase synchronization and frequency synchronization

between the modulator and demodulator. And we had discussed that in a fair

amount of detail for the continuous time case.

In some sense, in practical terms, that becomes much more of an issue in

continuous time than it does in discrete time, in part, because synchronization

between a modulator and demodulator is often much harder in a continuous time

system, which is essentially an analog system as compared with a digital system.

Another very important reason and it's important to stress this at the outset is that,

whereas the theory involving the use of complex exponential and sinusoidal

modulation parallels very strongly in the continuous time and the discrete time case.

In practical terms, it has much more significance in continuous time than it does in

discrete time. That is, the notion called sinusidal modulation, in the context of

communication systems, is extremely important for continuous time systems, and

less so in discrete time systems.

Now as a preview of a point to be raised later on, I should modify that slightly with

the statement that one very important place in which sinusoidal modulation in a

discrete time context arises, is in a class of systems called transmultiplexers or

transmodulation systems. And this surface is basically because so many

communication systems are now becoming digital and, specifically, discrete time,

although the actual transmission is continuous time, the signal processing

manipulation and switching is discrete time.

And so, in fact, it turns out to be very important and useful to take a discrete time

representation of the analog signals or continuous time signals and, in a discrete

time, or digital representation, to convert them from one modulation scheme or one
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multiplexing scheme to another. And although I said a lot there that really requires

much more detail to develop in any sense at all, you should get the notion that

discrete time modulation systems become very important, in part, because of

implementational issues.

OK, now, there is another application that we have discussed for both continuous

time and actually, previously, for discrete time, amplitude modulation with sinusoidal

complex exponential carriers. And let me just remind you of that, because, in fact, it

becomes a very important one in the case of discrete time systems. And that is the

notion of using modulation together with fixed filtering to implement a filter, which

either has a variable cut off or converts, let's say, a low pass filter to a high pass

filter.

We had originally talked about this when we introduce the modulation property in

the context of converting a low pass filter to a high pass filter. And the notion was

that, if we modulate the signal with a carrier which is minus 1 to the n, and that's just

simply a complex exponential or sinusoidal carrier with a carrier frequency of pi,

then that, in effect, interchanges the low frequencies and the high frequencies. And

if, after modulation, that is processed with a low pass filter, and then the result is

demodulated, using exactly the same carrier, namely a carrier which is minus 1 to

the n, then the effect of that is equivalent to high pass filtering on the original signal.

And a generalization of that would involve, instead of this specific choice of minus 1

to the n, would involve a choice, in general, of e to the j omega sub cn, that is a

more general carrier frequency, and a demodulator which is e to the minus j omega

sub cn. And as I've represented it here, and as we had talked about it when we

talked about the modulation property for discrete time signals, we had specifically

chosen the conversion of a low pass to a high pass filter.

Well, let me continue the review of that just by reminding you of the details of what

happens with the spectra, and, specifically, the notion, if we take this particular case

of omega sub c is equal to pi, or equivalently, a carrier signal which is minus 1 to the

n, then if we have the original spectra and the spectrum of the carrier signal, the
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spectrum of the carrier signal convolved with this spectrum will then, in effect, shift

this by pi. And so, after modulating, the result that we have is a shift of that

spectrum so that what happened in low frequencies now happens at high

frequencies, namely around pi, and what happened at high frequencies now

happens at low frequencies.

Well, if that's processed now, with a low pass filter, and this dashed line indicates

the low pass filter, then the result that we get is shown here, where we've extracted

the low frequency portion of the modulated signal. And now when we modulate or

demodulate back, then this spectrum is shifted back to where it belongs. Namely,

it's shifted back to be centered around minus pi and around plus pi.

So if we just compare this spectrum with the original spectrum at the top, what we

can see is that, in effect, what we've done is to extract a portion of the spectrum

equivalent to processing with a high pass filter. And, again, this is very similar to

what we did in continuous time and all of the analytical processes and convolution

involved are very much the same.

Really, the biggest difference between continuous time discrete time has to do, not

so much with the details of the analysis, but perhaps has more to do with issues of

practical applications.

OK, well, so what we've done, so far, for continuous time and discrete time, is to talk

about modulation, amplitude modulation with complex exponential and sinusoidal

carriers. We saw that the analysis is very similar, although applications are slightly

different.

And now what I'd like to turn to is a different choice of carrier signal. And the carrier

signal, in this particular case, is a pulse train rather than a sinusoidal signal. Now

the idea is the following. In general, of course, the modulator consists of all of

multiplying x of t by whatever the carrier signal is. And previously, we've talked

about a carrier signal which is sinusoidal signal. The carrier signal that we want to

consider now is a carrier signal which, in fact, is a pulse train. And so, in fact, what

we want to do is multiply the input signal by a pulse train and, in effect, then, the
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modulated signal consists of the original signal, simply with time slices pulled out of

it, as I've indicated in the bottom curve.

So what we have now is a modulated signal that is a chopped or sliced version of

the original waveform and that is what's referred to as pulse amplitude modulation.

Now it seems like it's kind of a crazy idea. The idea is to chop out slices of the wave

form and hope that you could put things back together again. And the amazing thing

about it, as we'll see, is that, in fact, under fairly broad general and applicable

conditions, you really can put the waveform back together again if you just have

these time slices.

Not only that, but that basic notion, as we'll see, is independent, in fact, of what the

width of those time slices are. In fact the width can go to zero. And, in fact, we're

going to make it go to zero, and really only dependent on what the frequency of the

pulse train is.

So let's explore that in some detail. And what we want to look at is the analysis, but

let me, first, just comment, very briefly, that all of the analysis we go through, as has

been true in the case of sinusoidal modulation, all of the analysis then we go

through holds just as well with, essentially minor analytical modifications, to discrete

time pulse amplitude modulation as it does to continuous time pulse amplitude

modulation. And so we'll really only go through this in terms of tracking the wave

forms and spectra for the continuous time case. But bear in mind that the results

are basically similar for discrete time.

OK, well, let's see how so we get the basic result that we want to get. What we have

is modulated signal which is a pulse train, basically a square wave, and as we've

seen in previous lectures, the spectra or Fourier transform associated with that is an

impulse train. And the envelope of that impulse train is on the form of a sine x over x

function. The Fourier transform is impulses. And the spacing of the impulses is

associated with the fundamental frequency of the pulse train and that's omega sub

p.

So omega sub p is pi divided by the period of the pulse train. And the amplitude and
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shape of this envelope is dictated by the parameter delta, which has to do with how

wide the pulses are. OK, so we have a time function. It's multiplied by this pulse

train. Now we're talking continuous time.

So, in the frequency domain, we have the Fourier transform of the time function

convolved with this Fourier transform for the pulse train. And let's see what that

looks like. If we were to consider, let's say, a Fourier transform, which I have chosen

as more or less a general one, then in fact, when we convert all of this with this

impulse train, what we end up with is a replication of this spectrum at the places in

the frequency domain where the individual impulses occurred.

So we can see that this spectrum is replicated at each of these locations. And as

long as the frequency of the pulse train is large enough, compared with the

maximum frequency in the original signal, x of t, so that there's no overlap between

these triangles, then what you can see, in fact, somewhat amazingly is that, simply

by low pass filtering the result, we can get back, except for amplitude factor, we can

get back to the original signal.

Now it's amazing. It really is amazing that all that this depends on is the original

signal being band limited and the frequency of the pulse train being high enough so

that when you replicate the spectrum the frequency domain, there's no overlap

between these individual replications. And we'll have address that a little more in a

few minutes.

But let me, first of all, point out that this has a whole variety of very important

implications. One is, in the context of communications, it leads to another very

important multiplexing scheme for communications. We had talked last time about

frequency division multiplexing, where individual signals were put into individual

frequencies slots by choosing different carrier frequencies for a sinusoidal

modulating signal.

What this suggests is that what we can put different signals into, non-overlapping

time slots and, in fact, be able to recover the original signals back again. So in

particular, suppose that I had a signal which I modulated with a pulse train and I
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chose another signal, modulated with another pulse train, where the time slot was

different, and I continued this process. And after I'd done this with some number of

channels, simply added all those together as I indicate here. Then as long as I knew

what time slots to associate with what signal, I could get the original modulated

signals back again.

And then as long as the frequency of the impulse train was such that I was able to

do this reconstruction by simply low pass filtering, then I would be able to

demodulate. So it's a very different very important modulation scheme called time

division multiplexing in contrast to frequency division multiplexing as we had talked

about last time.

I had made reference earlier to the concept of trans-multiplexing. And in fact, what

happens in many communication systems is that the signals are represented, in

fact, in discrete time. The analog and continuous time signals are represented in

discrete time. And very often the conversion from frequency division multiplexing to

time division multiplexing and back is done, in fact, in the discrete time domain.

OK, so what we have then, is the notion that we can multiply a time function by a

pulse train, as I indicate here. And from the output I can, if the frequency of this

pulse train is high enough in relation to this bandwidth, from the output, which

consists of time slices, from those time slices I can recover the original signal.

Stressing again the reason it relates to the spectra, and the reason is that the

original spectra is simply replicated at multiples of the fundamental frequency of the

pulse train.

Now there's a very important thing to observe here, which is that the ability to do the

reconstruction is associated with the notion of whether we can extract that central

triangle. I happened to choose a triangular shape but obviously I could be talking

about any shape, as long as it's band limited, the ability to extract that. And notice

that, in this modulated output spectrum, the ability to recover this is totally

independent called what the value of delta is.

In other words, if we look back at the modulator, then, in fact, we can make delta,
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the width of these pulses, arbitrarily small. And, in theory, that doesn't affect our

ability to do the reconstruction. Now in practical terms it might.

Looking back once more at the spectrum of the output, notice that this amplitude is

proportional to delta. And what that suggests is that, as we make delta smaller and

smaller, which we might, in fact, want to do, if you want to time division multiplex lots

of channels, in principle, in theory, you could make it an infinite number of channels

just by making that infinitesimally small. The smaller it is, in some sense, the less

energy there is. And again, in practical terms, this one of those things if you push

down here pops up there, namely, you eventually run into issues such as noise

problems.

So, more typically what's done is to, in fact, eliminate this scale factor of delta. And

the way that that's done is very simply. It's done by choosing the width of the pulses,

and the height of the pulses, in such a way that the area is constant, even as we

make delta get arbitrarily small. So we can just modify our argument so that what

we're referring to is a modulated pulse train, which is a pulse train with pulses of

width delta and height, 1 over delta.

In that case, as delta gets arbitrarily small, then, in fact, what these rectangles

become are impulses, in which case, what we're talking about is a carrier signal

which, in fact, is an impulse train. And the resulting modulated signal is an impulse

train for which the amplitudes of the impulses are proportional to the original input

waveform at the times at which these impulses occur.

OK well, let's look at the analysis of that. And so now, what we're talking about, is a

spectrum that consists of the result of the spectrum we talked about before with the

sine x over x envelope, except that, now, as delta goes to zero that becomes flat. In

other words, the modulated signal is an impulse train. And so as we look at the

spectrum of the modulated signal, that is, then, an impulse train in the frequency

domain.

The height is proportional to the frequency of the impulse train and omega sub s

now denotes the frequency of the impulse train. And the resulting output of the
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modulator has a spectrum which is this original spectrum, again, replicated around

each of these impulses, in other words, replicated in multiples of the sampling

frequency

Now this is very much identical to the more general case. We have this replication of

the spectra. And as long as the frequency of the impulse train is large enough,

compared with the bandwidth of the signal so that these triangles don't overlap, I

can extract this portion of the spectrum by low pass filtering, in fact, would then give

us back the original signal.

Now if, instead, this frequency omega sub m is greater than omega sub s minus

omega sub m, we would have a spectrum that looked something more like this. And

what's happened, in this case, is that, because we have an overlap here, we've

destroyed the ability to recover the original signal from the impulse train. And that

would be true, also in a more general case, of pulse amplitude modulation with

pulses of non-zero width.

This effect by the way, is one that we'll be exploring in considerably more detail in

the next lecture. And it's a phenomenon or distortion refer to as aliasing which, in

fact, is an important and interesting topic.

But going back to the case in which we've chosen the frequency of the impulse train

high enough, then we would recover the original signal by processing it through a

low pass filter. And in that case, what this says is, that if we have a signal, and we

modulate it with an impulse train, if we then process that impulse train through an

idea low pass filter, given the right conditions on the frequency of impulse train and

the bandwidth of the signal, we can recover the original signal back again.

Now let me stress, just going back to the picture in which we had done this

modulation, that this process, where the modulation, where the carrier signal

involves an impulse train, is often referred to as sampling. And what that means,

specifically, is that, if we notice, this resulting impulse train is, in fact, a sequence of

samples of the original continuous time signal.
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In other words, what we've done, in effect, is taken instantaneous sample of this

wave form. And the implication is that, if we do that at a rapid enough rate in relation

to the bandwidth of the signal, then we can, in fact, recover the original signal back

again.

And, finally to remind you of the argument once more, we have an original signal

and we have its spectrum. When we've sampled it, and this is now the sampled

signal, it's an impulse train whose instantaneous values are samples of the original

waveform, the spectrum of that is the original one replicated. And when that is

processed, through a low pass filter, to extract this part of the spectrum, then, after

the low pass filter, we can recover the original signal back again.

OK well, in fact, although if you follow through the spectra and the wave forms, this

all seems fairly straightforward and, perhaps or perhaps not, obvious, it's really

worth reflecting on how amazing the result really is. We began this discussion by

talking about modulation. And in fact modulation and sinusoidal of modulation is

important in its own right.

We ended the discussion by talking about first pulse amplitude modulation, and then

showing how, under the right set of conditions, you can, in fact, take a wave form

and sample it with a set of instantaneous samples. And that set of instantaneous

samples, in fact, are sufficient to totally represent and reconstruct the signal. What

in fact, the formal statement that is, is refer to as the sampling theorem, a very

powerful theorem that says, if we're given equally spaced samples of a time

function, and if that time function is band limited, and if the bandwidth and if the

sampling frequency is chosen in the right way, in relation to the bandwidth, then, in

fact, the original time function is uniquely recoverable with a low pass filter.

Now the sampling theorem is, I would say, a watershed or cornerstone of a lot of

the discussion that we've been having for a whole variety of reasons. It, first of all,

drops out almost as a straightforward obvious statement. But more importantly what

it says is, if I have a continuous time signal which satisfies the right set of conditions,

I could represent it by what it does at sampling instance or, equivalently, at discrete
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instance of time.

Now what that leads to is a whole host of things. One of which is this statement that

says, if we have a continuous time signal, I could in fact, represent it as a discrete

time signal. And I could even think of processing a continuous time signal using

discrete time concepts. And when I'm all done converting back, through the power

of the sampling theorem, converting back to a continuous time signal.

So the sampling theorem provides us with a very major important bridge between

continuous time and discrete time implementations and ideas. In the next several

lectures, we will be exploring some of this in considerable detail. First, to focus in

more, next time, on some of the specific issues and distortions associated with

sampling. And following that, a discussion of what is referred to discrete time

processing of continuous time signals. Thank you.
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