THE DISCRETE FOURIER SERIES

Solution 8.1
$\tilde{x}_{1}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) e^{-j \frac{2 \pi}{N} n k}$
$=2+e^{-j \frac{\pi}{2} k}+e^{-j \frac{\pi}{2} 3 k}$
$e^{-j \frac{3 \pi}{2} k}=e^{-j k\left(-\frac{3 \pi}{2}+2 \pi\right)}=e^{j \frac{\pi}{2} k}$
Therefore,
$\tilde{\mathrm{x}}_{1}(\mathrm{k})=2+\mathrm{e}^{-j \frac{\pi}{2} k}+e^{j \frac{\pi}{2} k}=2\left[1+\cos \frac{\pi \mathrm{k}}{2}\right]$.

Solution 8.2
$\tilde{x}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) W_{N}^{k n}$
$\tilde{X}^{*}(k)=\sum_{n=0}^{n=1} \tilde{x}^{*}(n) w_{N}^{-k n}$
or, since $\tilde{x}(n)$ is real,
$\tilde{x}^{*}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) w_{N}^{-k n}$
Finally, substituting $-k$ for k
$\tilde{x}^{*}(-k)=\sum_{n=0}^{N-1} \tilde{x}(n) W_{N}^{k n}=\tilde{x}(k)$
Note, incidentally, that this is indeed satisfied for problem 8.1.

Solution 8.3
If we show that $\tilde{X}(k)$ is real, then from problem 8.2 it follows that
$\tilde{X}(k)$ is also even. Thus
$\tilde{x}^{*}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) \quad w_{N}^{-k n}$
Replacing n by $-n$ in the summation on the right-hand side
$\tilde{x}^{*}(k)=\sum_{n=0}^{-N+1} \tilde{x}(-n) W_{N}^{k n}$
or since $\tilde{x}(n)$ is even
$-\mathrm{N}+1$
$\tilde{x}^{*}(k)=\sum_{n=0} \tilde{x}(n) w_{N}^{k n}$
Finally, since $\tilde{x}(n)$ is periodic the limits on the summation can be replaced by the interval 0 to $N-1$. Thus $\tilde{X}^{*}(k)=\tilde{X}(k)$, i.e. $\tilde{X}(k)$ is real.

Solution 8.4

(i) Since $\tilde{x}(n)$ is periodic with period $10, \tilde{X}(k)$ is also periodic with period 10. Thus (i) is true.
(ii) Since $\tilde{x}(n)$ is real, $\tilde{X}^{*}(k)=\tilde{X}(-k)$. In order for the stated property to also be true, $\tilde{X}(k)$ must be real, which requires that $\tilde{x}(n)$ be even, which is not the case. Thus (ii) is not true.
(iii) $\tilde{X}(0)=\sum_{n=0}^{N-1} \tilde{x}(n)=0$. Thus (iii) is true.
(iv) $\tilde{X}(k) e^{j^{k \frac{2 \pi}{5}}}$ is the Fourier series for $\tilde{x}(n+2)$. From the figure we note that $\tilde{x}(n+2)$ is not an even function. Thus
$\tilde{x}(k) e^{j \frac{k 2 \pi}{5}}$ is not real. However, $\tilde{x}(n-2)$ is an even sequence and thus $-\frac{j k 2 \pi}{5}$
$\tilde{X}(k) e^{\frac{5}{5}}$ is real

Solution 8.5

See Figure S8.5-1 on next page.

Figure S8.5-1

Solution 8.6
The Discrete Fourier series coefficients of $\tilde{X}(k)$ would be defined as $\tilde{y}(n)=\sum_{k=0}^{N-1} \tilde{X}(k) w_{N}^{k n}$
$\tilde{x}(n)$ is given by
$\tilde{x}(n)=\frac{1}{N} \sum^{N-1} \tilde{x}(k) W_{N}^{-k n}$
thus $\tilde{y}(n)=N \tilde{x}(-n)$.
(a) The time origin can be chosen such that all the $\tilde{X}(k)$ are real if $x(n)$ can be shifted to be an even function. It can for sequence (b) but not for the others.
(b) This requires that the time origin be chosen so that $\tilde{x}(n)$ is odd. This cannot be done for any of the sequences.

Solution 8.8

$$
\begin{aligned}
\tilde{x}_{1}(k) & =\sum_{n=0}^{N-1} \tilde{x}(n) w_{N}^{k} \\
\tilde{x}_{2}(k) & =\sum_{n=0}^{2 N-1} \tilde{x}(n) W_{2 N}^{k n} \\
& =\sum_{n=0}^{N-1} \tilde{x}(n) W_{2 N}^{k n}+\sum_{n=0}^{N-1} \tilde{x}(n+N) W_{2 N}^{k(n+N)}
\end{aligned}
$$

or, since $\tilde{x}(n)$ is periodic with period N and $W_{2 N}^{N}=-1$
$\tilde{x}_{2}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) W_{2 N}^{k-1}\left[1+(-1)^{k}\right]$
$=\left[1+(-1)^{k}\right] \sum_{n=0}^{N-1} \tilde{x}(n) W_{2 N}^{k n}$
Thus, for k odd, $\tilde{\mathrm{x}}_{2}(\mathrm{k})=0$. For k even, $W_{2 N}^{k n}=W_{N}^{n(k / 2)}$
and

$$
\begin{array}{rlr}
\tilde{x}_{2}(k) & =2 \sum_{n=0}^{N-1} \tilde{x}(n) w_{N}^{n(k / 2)} & \\
& =2 \tilde{x}_{1}(k / 2) &
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

