COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 2

Solution 19.1

NORMAL ORDER
$x(0000)=x(0)$
$x(0001)=x(1)$
$x(0010)=x(2)$
$x(0011)=x(3)$
$x(0100)=x(4)$
$x(0101)=x(5)$
$x(0110)=x(6)$
$x(0111)=x(7)$
$x(1000)=x(8)$
$x(1001)=x(9)$
$x(1010)=x(10)$
$x(1011)=x(11)$
$x(1100)=x(12)$
$x(1101)=x(13)$
$x(1110)=x(14)$
$x(1111)=x(15)$

BIT REVERSED ORDER
$x(0000)=x(0)$
$x(1000)=\alpha(0)$
$x(0100)=x(4)$
$x(1100)=x(12)$
$x(0010)=x(2)$
$x(1010)=x(10)$
$x(0110)=x(6)$
$x(1110)=x(14)$
$x(0001)=x(1)$
$x(1001)=x(9)$
$x(0101)=x(5)$
$x(1101)=x(13)$
$x(0011)=x(3)$
$x(1011)=x(11)$
$x(0111)=x(7)$
$x(1111)=x(15)$

Solution 19.2
(a)

Figure Sl9.2-1
(b)

Figure Sl9.2-2
The desired flow-graph is obtained by interchanging lines A and B in Figure S19.2-1

Solution 19.3
(a) $\mathrm{N} / 2$
(b) $W_{N}^{M k / 2} \quad k=0,1, \ldots, N / M-1 \quad M=2^{m}$
(c) $\mathrm{N} \cdot 2^{-\mathrm{m}}$
(d) $N \cdot 2^{-m+1} ; \quad 2 \leqslant m \leqslant \log _{2} N$

Solution 19.4*
(a) $\quad x_{m+1}(p)=x_{m}(p)+W_{N}^{r} x_{m}(q)$

$$
\left|x_{m+1}(p)\right| \leq\left|x_{m}(p)\right|+\left|w_{N}^{r} x_{m}(q)\right|=\left|x_{m}(p)\right|+\left|x_{m}(q)\right|
$$

Thus with $\left|X_{m}(p)\right|$ and $\left|X_{m}(q)\right|$ both less than $1 / 2$,
$\left|x_{m+1}(p)\right|<1$
and consequently $\left|x_{m+1}(p)\right|^{2}<1$
Finally, since $\left|x_{m+1}(p)\right|^{2}=\left\{\operatorname{Re}\left[x_{m+1}(p)\right]\right\}^{2}+\left\{\operatorname{Im}\left[x_{m+1}(p)\right]\right\}^{2}$
it follows that
$\left|\operatorname{Re}\left[X_{m+1}(p)\right]\right|<1$
$\left|\operatorname{Im}\left[X_{m+1}(p)\right]\right|<1$

In a similar manner it follows that
$\left|\operatorname{Re}\left[x_{m+1}(q)\right]\right|<1$
$\left|\operatorname{Im}\left[\mathrm{X}_{\mathrm{m}+1}(\mathrm{q})\right]\right|<1$
(b) $\operatorname{Re}\left[X_{m+1}(p)\right]=\operatorname{Re}\left[X_{m}(p)\right]+\operatorname{Re}\left[W_{N}^{r} X_{m}(q)\right]$

Let $X_{m}(q)$ be expressed in polar form as $A e^{j \theta}$
Then $\operatorname{Re}\left[X_{m+1}(p)\right]=\operatorname{Re}\left[X_{m}(p)\right]+\operatorname{Acos}\left(\theta-\frac{2 \pi r}{N}\right)$
$\operatorname{Re}\left[X_{m}(p)\right]$ is constrained to be less than $1 / 2$ and since the magnitudes of the real and imaginary parts of $X_{m}(q)$ are constrained to be less than $1 / 2$, A must be less than $1 / \sqrt{2}$. If $\theta=\frac{2 \pi r}{N}$, then
$\left|\operatorname{Re}\left[x_{m+1}(p)\right]\right|=\left|\operatorname{Re}\left[x_{m}(p)\right]+A\right|<\frac{1}{2}+\frac{1}{\sqrt{2}}$

Since this is greater than unity, we see that the stated constraints will not guarantee that no over-flow occurs.

Solution 19.5*
(a)
(1) Bit reversal - lines 7 through 16
(2) Recursive computation of W_{N} 's - line 29
(3) Basic Butterfly computation - lines 26 through 28
(b)
(1) Insert between lines 7 and 8: If (I.GE.J) GO TO 5
(2) Line 22 should read:
$\mathrm{W}=\operatorname{CMPLX}(\operatorname{COS}(P I / F L O A T(L E I)),-\operatorname{SIN}(P I / F L O A T(L E 1)))$
(3) Line 25: IP = I + LEl

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

