COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 2

Solution 19.1

NORMAL ORDER	BIT REVERSED ORDER
x(0000) = x(0)	x(0000) = x(0)
x(0001) = x(1)	$\mathbf{x}(1000) = \mathbf{x}(3)$
x(0010) = x(2)	x(0100) = x(4)
x(0011) = x(3)	x(1100) = x(12)
x(0100) = x(4)	x(0010) = x(2)
x(0101) = x(5)	x(1010) = x(10)
x(0110) = x(6)	x(0110) = x(6)
x(0111) = x(7)	x(1110) = x(14)
x(1000) = x(8)	x(0001) = x(1)
x(1001) = x(9)	x(1001) = x(9)
x(1010) = x(10)	x(0101) = x(5)
x(1011) = x(11)	x(1101) = x(13)
x(1100) = x(12)	x(0011) = x(3)
x(1101) = x(13)	x(1011) = x(11)
x(1110) = x(14)	x(0111) = x(7)
x(1111) = x(15)	x(1111) = x(15)

Solution 19.2

(a)

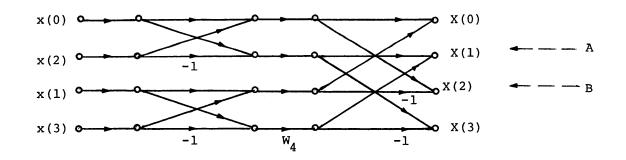


Figure S19.2-1

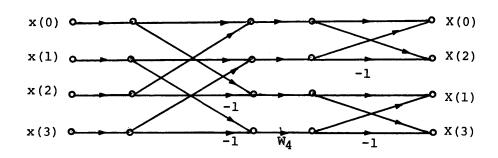


Figure S19.2-2

The desired flow-graph is obtained by interchanging lines A and B in Figure S19.2-1

Solution 19.3

(a) N/2

(b)

- (b) $W_N^{Mk/2}$ k = 0, 1, ..., N/M 1 $M = 2^m$
- (c) $N \cdot 2^{-m}$
- (d) $N \cdot 2^{-m+1}$; $2 \leq m \leq \log_2 N$

Solution 19.4

```
(a) X_{m+1}(p) = X_m(p) + W_N^r X_m(q)

|X_{m+1}(p)| \le |X_m(p)| + |W_N^r X_m(q)| = |X_m(p)| + |X_m(q)|

Thus with |X_m(p)| and |X_m(q)| both less than 1/2,

|X_{m+1}(p)| < 1

and consequently |X_{m+1}(p)|^2 < 1

Finally, since |X_{m+1}(p)|^2 = \left\{ \operatorname{Re} [X_{m+1}(p)] \right\}^2 + \left\{ \operatorname{Im} [X_{m+1}(p)] \right\}^2

it follows that

|\operatorname{Re} [X_{m+1}(p)]| < 1
```

In a similar manner it follows that

 $|\text{Re}[X_{m+1}(q)]| < 1$

 $| Im [X_{m+1}(q)] | < 1$

(b) Re $[X_{m+1}(p)] = Re [X_m(p)] + Re [W_N^r X_m(q)]$

Let $X_m(q)$ be expressed in polar form as Ae^{j θ}

Then Re $[X_{m+1}(p)] = \operatorname{Re} [X_m(p)] + \operatorname{Acos}(\theta - \frac{2\pi r}{N})$

Re $[X_m(p)]$ is constrained to be less than 1/2 and since the magnitudes of the real and imaginary parts of $X_m(q)$ are constrained to be less than 1/2, A must be less than $1/\sqrt{2}$. If $\theta = \frac{2\pi r}{N}$, then

$$|\operatorname{Re}[X_{m+1}(p)]| = |\operatorname{Re}[X_{m}(p)] + A| < \frac{1}{2} + \frac{1}{\sqrt{2}}$$

Since this is greater than unity, we see that the stated constraints will not guarantee that no over-flow occurs.

Solution 19.5*

```
(a)
(1) Bit reversal - lines 7 through 16
(2) Recursive computation of W<sub>N</sub>'s - line 29
(3) Basic Butterfly computation - lines 26 through 28
(b)
(1) Insert between lines 7 and 8: If (I.GE.J) GO TO 5
(2) Line 22 should read:
W = CMPLX(COS(PI/FLOAT(LEI)), - SIN(PI/FLOAT(LE1)))
(3) Line 25: IP = I + LE1
```

Resource: Digital Signal Processing Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.