DESIGN OF FIR DIGITAL FILTERS

Solution 17.1

Rectangular window:
$W_{R}\left(e^{j \omega)}=\sum_{n=-N+1}^{N-1} e^{-j \omega n}\right.$

$$
\begin{aligned}
& =\sum_{n=0}^{2 N-2} e^{-j \omega(n-N+1)} \\
& =e^{-j \omega(-N+1)} \sum_{n=0}^{2 N-2} e^{-j \omega n} \\
& =e^{-j \omega(-N+1)} \frac{1-e^{-j \omega(2 N-1)}}{1-e^{-j \omega}} \\
& W_{R}\left(e^{j \omega)}=\frac{\sin \left(\left(\frac{2 N-1}{2}\right) \omega\right)}{\sin \frac{\omega}{2}}\right.
\end{aligned}
$$

The width of the main lobe is $\frac{4 \pi}{2 N-1}$ which, for $N \gg 1$ is approximately $\frac{2 \pi}{N}$.

Bartlett window:
Define $\mathrm{w}_{\mathrm{R}}(\mathrm{n})=1 \quad 0 \leq \mathrm{n} \leq \mathrm{N}-\mathrm{l}$

$$
=0 \quad \text { otherwise }
$$

Then $\tilde{w}_{B}(n-N+1)=\frac{1}{N} \quad \tilde{w}_{R}(n) * \tilde{W}_{R}(n)$
From Eq. 7.76 of the text (with $N=M+1$).
$\tilde{W}_{R}\left(e^{j \omega}\right)=e^{-j \frac{\omega}{2}(N-1)} \frac{\sin \frac{\omega N}{2}}{\sin \frac{\omega}{2}}$
Therefore
$W_{B}\left(e^{j \omega}\right)=\frac{1}{N}\left(\frac{\sin \frac{\omega N}{2}}{\sin \frac{\omega}{2}}\right)^{2}$
In this case the width of the main lobe is $\frac{4 \pi}{N}$ which is twice that for the rectangular window.

Raised cosine window:

$$
\begin{aligned}
W_{H}\left(e^{j \omega}\right) & =\sum_{-(N-1)}^{N-1}\left[\alpha+\beta \cos \left(\frac{\pi n}{N-1}\right)\right] e^{-j \omega n} \\
& =\sum_{-(N-1)}^{N-1} \alpha e^{-j \omega n}+\frac{B}{2} \sum_{-(N-1)}^{N-1} e^{-j n\left(\omega+\frac{\pi}{N-1}\right)}+\sum_{-(N-1)}^{N-1} e^{-j n\left(\omega-\frac{\pi}{N-1}\right)} \\
= & \alpha \frac{\sin \left(\omega\left(\frac{2 N-1}{2}\right)\right)}{\sin \frac{\omega}{2}}+\frac{B}{2}\left[\frac{\sin \left[\left(\omega+\frac{\pi}{N-1}\right) \frac{2 N-1}{2}\right]}{\sin \left[\frac{1}{2}\left(\omega+\frac{\pi}{N-1}\right)\right]}+\frac{\sin \left[\left(\omega-\frac{\pi}{N-1}\right) \frac{2 N-1}{2}\right]}{\sin \left[\frac{1}{2}\left(\omega-\frac{\pi}{N-1}\right)\right]}\right]
\end{aligned}
$$

Assuming that $\mathrm{N} \gg 1$, this can be rewritten as
$W_{H}\left(e^{j \omega}\right)=\alpha \frac{\sin \omega N}{\sin \frac{\omega}{2}}+\frac{\beta}{2}\left[\frac{\sin (N \omega+\pi)}{\sin \frac{1}{2 N}(N \omega+\pi)}+\frac{\sin (N \omega-\pi)}{\sin \frac{1}{2 N}(N \omega-\pi)}\right]$

This is the superposition of three terms as sketched in
Figure sl7.l-1.

Figure Sl7.1-1
From this figure we observe that the first values of ω for which the superposition will be zero are $\omega= \pm \frac{2 \pi}{N}$. Consequently for this window also, the width of the main lobe is $\frac{4 \pi}{N}$.

Solution 17.2
(a) Since $h_{1}(n)$ and $h_{2}(n)$ are related by a circular shift, their DFTs are related by
$H_{2}(k)=W_{8}^{4 k_{H_{1}}}(k)=(-1)^{k_{H_{1}}}(k)$.
Thus, their magnitudes are equal.
(b) Since the DFT corresponds to samples of the Fourier transform, the values of $H_{l}(k)$ are the samples of $H_{l}\left(e^{j \omega}\right)$ indicated in Figure Sl7.2-1

Figure Sl7.2-1
From (a), $H_{2}(k)=(-1)^{k_{H_{1}}}(k)$. Thus the values $H_{2}(k)$ are as indicated in Figure Sl7.2-2. Since these alternate in polarity, the continuous frequency response of which these are samples, must go through zero in between these samples as indicated.

Figure Sl7.2-2

Thus $h_{2}(n)$ obviously does not correspond to a good low pass filter, even though the magnitude of its DFT values are identical to those of the low pass filter $h_{1}(n)$.

Solution 17.3
(a) Since $E\left(e^{j \omega}\right)=H_{d}\left(e^{j \omega}\right)-H\left(e^{j \omega}\right)$, and $e(n)$ is the inverse Fourier transform of $E\left(e^{j \omega}\right)$,
$e(n)=h_{d}(n)-h(n)$.
(b) $\quad \varepsilon^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|E\left(e^{j \omega}\right)\right|^{2} d \omega$

$$
=\frac{1}{2 \pi} \int \sum_{-\pi}^{\pi}\left[\sum_{n=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} e(n) e(k) e^{-j \omega n} e^{j \omega k}\right] d \omega
$$

Interchanging the order of integration and summation

$$
\varepsilon^{2}=\frac{1}{2 \pi} \sum_{n=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} e(n) e(k) \int_{-\pi}^{\int_{-\pi}^{\pi} e^{j \omega(k-n)} d \omega} \underbrace{=0} \begin{array}{ll}
k \neq n \\
& =2 \pi \\
k=n
\end{array}
$$

Thus,
$\varepsilon^{2}=\sum_{n=-\infty}^{+\infty} e^{2}(n)$.
(c) From the results of parts (a) and (b),
$\varepsilon^{2}=\sum_{n=-\infty}^{+\infty}\left[h_{d}(n)-h(n)\right]^{2}$
or, since $h(n)=0, n<0$ and $n \geq N$,
$\varepsilon^{2}=\sum_{n=0}^{N-1}\left[h_{d}(n)-h(n)\right]^{2}+\sum_{n=-\infty}^{-1} h_{d}^{2}(n)+\sum_{n=N}^{\infty} h_{d}^{2}(n)$.

Clearly, the choice of $h(n)$ cannot affect the last summations. The first is non-negative and consequently its minimum value is zero which is achieved for $h(n)=h_{d}(n)$.

It should be stressed that although a rectangular window minimizes the mean square error, it does not generally result in the best frequency characteristic in terms, for example of passband or stopband ripple.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

