THE DISCRETE FOURIER TRANSFORM

Solution 9.1

$$
\begin{aligned}
x(k) & =\left[\begin{array}{ll}
\sum_{n=0}^{N-1} x(n) & W_{N}^{k n}
\end{array}\right] R_{N}(k) \\
& =R_{N}(k)
\end{aligned}
$$

(b)

$$
X(k)=W_{N}^{k n_{0}} R_{N}(k)
$$

$$
\begin{aligned}
(c) & x(k)
\end{aligned} \begin{aligned}
&\left.\sum_{n=0}^{N-1} a^{n} W_{N}^{k n}\right] R_{N}(k) \\
&=\left[\frac{1-a^{N} W_{N}^{k N}}{1-a W_{N}^{k}}\right] R_{N}(k) \\
&=\left[\frac{1-a^{N}}{1-a W_{N}^{k}}\right] R_{N(k)}
\end{aligned}
$$

Solution 9.2

Figure S9.2-1

Solution 9.3
Since $X_{I}(k)=-X_{I}((N-k))_{N} R_{N}(k)$
$X_{I}(0)=-X_{I}((N))_{N} R_{N}(k)=-X_{I}(0)$
Therefore $X_{I}(0)=0$

Also, for N even,
$X_{I}\left(\frac{N}{2}\right)=-X_{I}\left(\left(N-\frac{N}{2}\right)\right)_{N} R_{N}(k)$

$$
=-X_{I}\left(\frac{N}{2}\right)
$$

Therefore $X_{I}\left(\frac{N}{2}\right)=0$.

Solution 9.4

Figure S9.4-1

Solution 9.5

S9. 2

Note that this corresponds to $x_{1}(n)$ circularly shifted to the right by two points.

Solution 9.6
We wish to compute $X_{1}(k)$ given by
$x_{1}(k)=\left\{\sum_{n=0}^{9} x(n) z_{k}^{-n}\right\} R_{10}(k)$
where $z_{k}=0.5 e^{\frac{j 2 \pi k}{10}} e^{j \frac{\pi}{10}}$
so that

$$
\begin{aligned}
x_{1}(k) & =\left\{\sum_{n=0}^{9} x(n)\left[\frac{1}{2} e^{\frac{j 2 \pi k}{10}} e^{\frac{j \pi}{10}}\right]^{-n}\right\} R_{10}(k) \\
& =\left\{\sum_{n=0}^{9} x(n)\left[\frac{1}{2} e^{\left.\frac{j \pi}{10}\right]^{-n}} e^{\frac{-j 2 \pi k n}{10}}\right\} R_{10}(k)\right.
\end{aligned}
$$

Thus $X_{1}(k)$ is the 10 -point DFT of the sequence
$x_{1}(n)=x(n)\left[\frac{1}{2} e^{\frac{j \pi}{10}}\right]^{-n}$

Solution 9.7
In all of the following equations the DFT computed is valid only in the range $0 \leq k \leq N-1$ and is zero outside that range. This permits us to keep the equations somewhat cleaner by suppressing the use of the function $R_{N}(k)$.

$$
\begin{aligned}
G_{1}(k) & =\sum_{n=0}^{N-1} x(N-1-n) W_{N}^{k n} \\
& =\sum_{m=0}^{N-1} x(m) w_{N}^{k(N-1-m)} \\
& =\sum_{m=0}^{N-1} x(m) e^{\frac{j 2 \pi k}{N}} e^{j \frac{2 \pi}{N} m k} \\
& =e^{j^{\frac{2 \pi k}{N}}} x\left(e^{-j \frac{2 \pi}{N} k}\right)=H_{7}(k) \\
G_{2}(k) & =\sum_{n=0}^{N-1}(-1)^{n} x(n) W_{N}^{k n}=\sum_{n=0}^{N-1} x(n) W_{N}^{\frac{N n}{2}} W_{N} k n
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{N-1} x(n) e^{-\frac{j 2 \pi}{N}}\left(k+\frac{N}{2}\right) n=x\left(e^{\frac{j 2 \pi}{N}}\left(k+\frac{N}{2}\right)\right. \\
& =H_{8}(k) \\
& G_{3}(k)=\sum_{\substack{n=0 \\
N-1}}^{N-1} x(n) w_{2 N}^{n k}+\sum_{n=N}^{2 N-1} x(n-N) w_{2 N}^{n k} \\
& =\sum_{n=0}^{N-1} x(n)\left[V_{2 N} n k+W_{2 N}(n+N) k\right] \\
& =\sum_{n=0}^{N-1} x(n) \quad w_{2 N}^{n k}\left[1+W_{2 N}^{N k}\right] \\
& =\left[1+(-1)^{k}\right] X\left(e^{\frac{j 2 \pi}{2 N} k}\right)=H_{3}(k) \\
& G_{4}(k)=\sum_{n=0}^{\frac{N}{2}-1}\left(x(n)+x\left(n+\frac{N}{2}\right)\right) W_{\frac{N}{2}}^{n k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x(n) N_{\frac{N}{2}}^{n-1}+\sum_{n=\frac{N}{2}}^{j-1} x(n) W_{\frac{N}{2}}^{N}\left(n-\frac{N}{2}\right) k \\
& =\sum_{n=0}^{N-1} x(n) N_{\frac{N}{2}}^{n k}=x\left(e^{\frac{j 4 \pi}{N}}\right)=H_{6}(k) \\
& G_{5}(k)=\sum_{n=0}^{2 N-1} x(n) W_{2 N}^{n k}=x\left(e^{\frac{j \pi k}{N}}\right)=H_{2}(k) \\
& G_{6}(k)=\sum_{n=0}^{N-1} x(n) \quad w_{2 N}^{2 n k}=x\left(e^{\frac{j 2 \pi k}{N}}\right)=H_{l}(k) \\
& G_{7}(k)=\sum_{n=0}^{\frac{N}{2}-1} x(2 n) \quad W_{\frac{N}{2}}^{n k} \\
& =\sum_{n=0}^{N-1} x(n)\left[\frac{1+(-1)^{n}}{2}\right] w_{\frac{N}{2}}^{n k / 2} \\
& =\frac{1}{2} \sum_{n=0}^{N-1} x(n)\left[w_{N}^{n k}+w_{N}^{n(k+N / 2)}\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left[x\left(e^{\frac{j 2 \pi k}{N}}\right)+x\left(e^{\frac{j}{N}}(k+N / 2)\right)\right]=H_{5}(k)
$$

All of the above properties can alternatively be obtained from the basic DFT properties of sections 8.7 and 8.8 , or the z-transform properties of section 4.4. Many of the properties used in this problem have important practical applications. $g_{5}(n)$, for example, corresponds to augmenting a finite length sequence with zeros so that a computation of the DFT for this augmented sequence provides finer spectral sampling of the Fourier transform.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

