DIGITAL BUTTERWORTH FILTERS

Solution 16.1

The squared magnitude function for a fifth order Butterworth filter with cutoff frequency $\Omega_{c}=2 \pi \times 10^{3}$ is given by
$H(s) H(-s)=\frac{1}{1+\left(\frac{s}{j 2 \pi \times 10^{3}}\right)^{10}}$
The poles of $H(s) H(-s)$ are the roots of $1+\left(\frac{s}{j 2 \pi \times 10^{3}}\right)^{10}=0$
or $\frac{1}{10}$
$s=(-1)^{10}\left(j 2 \pi \times 10^{3}\right)$
as indicated in Figure S16.1-1

Figure Sl6.1-1

Since $H(s)$ corresponds to a stable, causal filter, we factor the squared magnitude function so that the left-half plane poles correspond to $H(s)$ and the right-half plane poles correspond to $H(-s)$. Thus the poles of $H(s)$ are as indicated in Figure s16.1-2.

Figure Sl6.1-2

Solution 16.2

Since the Butterworth filter has a monotonic frequency response with unity magnitude at $\omega=0$ the stated specifications will be met if we require that
$\left|H\left(e^{j 0}\right)\right|=1$
$-0.75 \leq 20 \log _{10}\left|\mathrm{H}\left(\mathrm{e}^{j 0.2613 \pi}\right)\right|$
$20 \log _{10}\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0.4018 \pi}\right)\right| \leq-20$
or, equivalently,

$$
\left|H\left(e^{j 0.2613 \pi}\right)\right|^{2} \geq 10^{-.075}
$$

and

$$
\left|H\left(e^{j 0.4018 \pi}\right)\right|^{2} \leq 10^{-2}
$$

Using impulse invariance with $T=1$ and neglecting aliasing we require that the analog filter $H_{a}(j \Omega)$ meet the specifications

$$
\begin{aligned}
& \left|H_{a}(j 0.2613 \pi)\right|^{2} \geq 10^{-.075} \\
& \left|H_{a}(j 0.4018 \pi)\right|^{2} \leq 10^{-2}
\end{aligned}
$$

We will first consider meeting these specifications with equality. Thus,
$1+\left(\frac{j 0.2613 \pi}{j \Omega_{c}}\right)^{2 \mathrm{~N}}=10^{.075}$
$1+\left(\frac{j 0.4018 \pi}{j \Omega c}\right)^{2 N}=10^{2}$
or
$2 \mathrm{~N} \log (0.4018 \pi)-2 \mathrm{~N} \log \Omega_{\mathrm{C}}=\log \left(10^{2}-1\right)$
$2 \mathrm{~N} \log (0.2613 \pi)-2 \mathrm{~N} \log \Omega_{c}=\log \left(10^{.075}-1\right)$

Subtracting we obtain
$2 \mathrm{~N} \log \left(\frac{0.4018 \pi}{0.2613 \pi}\right)=\log \left(\frac{10^{2}-1}{10^{.075}-1}\right)$
or
$N=7.278$.

Since N must be an integer, we choose $N=8$. Then, to compensate for the effect of aliasing we can choose Ω_{c} to meet the passband edge specifications in which case the stopband specifications will be exceeded. Determining Ω_{c} on this basis we have
$\log \Omega_{c}=\log (0.2613 \pi)-\frac{1}{2 N} \log \left(10^{.075}-1\right)$
or

$$
\Omega_{c}=0.911
$$

Thus the analog filter squared magnitude function is
$H_{a}(s) H_{a}(-s)=\frac{1}{1+\left(\frac{s}{j 0.911}\right)^{16}}$.
The poles of the squared magnitude function are indicated in Figure Sl6.2-1.

Figure Sl6.2-1

Therefore $H_{a}(s)$ has four complex conjugate pole pairs as indicated below:
pole-pair 1: $0.911 e^{\frac{j 9 \pi}{16}}, 0.911 e^{-j \frac{9 \pi}{16}}$
pole-pair 2: $0.911 e^{\frac{11 \pi}{16}}, 0.911 e^{-\mathrm{j} \frac{11 \pi}{16}}$
pole-pair 3: $0.911 e^{\frac{j 13 \pi}{16}}, 0.911 e^{-\frac{j 13 \pi}{16}}$
pole-pair 4: $0.911 e^{\frac{j 15 \pi}{16}}, 0.911 e^{-\frac{15 \pi}{16}}$

From these pole-pairs it is straightforward to express $H_{a}(s)$ in factored form as

$$
\mathrm{H}_{\mathrm{a}}(\mathrm{~s})=\prod_{\mathrm{k}=1}^{4} \frac{\mathrm{~A}}{\left(\mathrm{~s}-\mathrm{s}_{\mathrm{k}}\right)\left(\mathrm{s}-\mathrm{s}_{\mathrm{k}}^{\star}\right)}
$$

S16. 4
where the factor A is determined so that $H_{a}(s)$ has unity gain at zero frequency, i.e.
$H_{a}(0)=1$ or $A=\prod_{k=1}^{4}\left|s_{k}\right|^{2}=(0.911)^{8}$.
To transform this analog filter to the desired digital filter using impulse invariance, we would first expand $H_{a}(s)$ in a partial fraction expansion as
$\left.H_{a}(s)=\sum_{k=1}^{4} \eta \frac{a_{k}}{s-s_{k}}+\frac{a_{k}^{*}}{s-s_{k}^{*}}\right]$.

The desired digital filter transfer function is then
$H(z)=\sum_{k=1}^{4}\left[\frac{a_{k}}{1-e^{S_{k}-1}}+\frac{a_{k}^{*}}{1-e^{s_{k}^{*}}{ }_{z}^{*-1}}\right]$.
The residues a_{k} and a_{k}^{*} are evaluated as:
$a_{k}=\left.H_{a}(s)\left(s-s_{k}\right)\right|_{s=s_{k}}$.

Solution 16.3

Again the specifications on the digital filter are that
$\left|H\left(e^{j 0.2613 \pi}\right)\right|^{2} \geq 10^{-.075}$
and
$\left|H\left(e^{j 0.4018 \pi}\right)\right|^{2} \leq 10^{-2}$.

To obtain the specifications on the analog filter we must determine the analog frequencies Ω_{p} and Ω_{s} which will map to the digital frequencies of 0.2613π and 0.4018π respectively when the bilinear transformation is applied. With $T=1$ in the bilinear transformation, these are given by
$\Omega_{p}=2 \tan \left(\frac{.2613 \pi}{2}\right)=.8703$
$\Omega=2 \tan \left(\frac{.4018 \pi}{2}\right)=1.4617$

Thus, the specifications on the analog Butterworth filter are:
$\left|H_{a}(j .8703)\right|^{2} \geq 10^{-.075}$
$\left|H_{a}(j 1.4617)\right|^{2} \leq 10^{-2}$

As in problem 16.2 we will consider meeting these specifications with equality. Thus:

2 N
$1+\left(\frac{.8703}{\Omega_{c}}\right)^{2 \mathrm{~N}}=10^{.075}$
$1+\left(\frac{1.4617}{\Omega_{c}}\right)^{2 \mathrm{~N}}=10^{2}$

Solving for N we obtain
$\mathrm{N}=6.04$.

This is so close to 6 that we might be willing to relax the specifications slightly and use a $6^{\text {th }}$ order filter. Alternatively we would use a $7^{\text {th }}$ order filter and exceed the specifications. Choosing the latter and picking Ω_{c} to exactly meet the pass band specifications,
$\operatorname{l4}\left[\log (.8703)-\log _{c}\right]=\log \left[10^{.075}-1\right]$
$\Omega_{c}=.9805$.

Thus the analog filter squared magnitude function is
$H_{a}(s) H_{a}(-s)=\frac{1}{1+\left(\frac{s}{.9805}\right)^{14}}$
the poles of which are indicated in Figure Sl6.3-1.

Figure S16.3-1

Therefore, $\mathrm{H}_{\mathrm{a}}(\mathrm{s})$ has three complex conjugate pole-pairs and one real pole as indicated below:
real pole: -. 9805
$\frac{j 8 \pi}{14}$
$-j \frac{8 \pi}{14}$
pole-pair 1: . 9805 e , . 9805 e

$$
\frac{j 10 \pi}{14} \quad-\frac{j 10 \pi}{14}
$$

pole-pair 2: . 9805 e , . 9805 e

$$
\frac{j 12 \pi}{14} \quad-\frac{j 12 \pi}{14}
$$

pole-pair 3: . 9805 e , . 9805 e

From these pole locations $H_{a}(s)$ can be easily expressed in factored form. The digital filter transfer function is then obtained as:
$H(z)=H_{a}(s) \left\lvert\, s=2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right.$.

Solution 16.4

Let $H_{\ell}(z)$ denote the transfer function of the lowpass filter designed in Problem 16.3 and $H_{h}(z)$ the transfer function of the desired highpass filter. To obtain $H_{\ell}(z)$ from $H_{h}(z)$ we apply the lowpass to high pass transformation (see table 7.1 page 434 of the text).

$$
z^{-1}=-\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}
$$

where
$\alpha=-\frac{\cos \left(\frac{.4018 \pi+.2613 \pi}{2}\right)}{\cos \left(\frac{.4018 \pi-.2613 \pi}{2}\right)}$
$\alpha=-0.517$
$H_{h}(z)=H_{\ell}\left[-\frac{1+\alpha z^{-1}}{z^{-1}+\alpha}\right]$

Next, let θ_{S} denote the stopband edge frequency for the lowpass filter and ω_{s} the stopband edge frequency for the highpass filter. Then, inverting the transformation

$$
z^{-1}=-\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}
$$

we have
$z^{-1}=-\left(\frac{z^{-1}+\alpha}{\alpha z^{-1}+1}\right)$

Thus,
$e^{-j \omega} s=-\left(\frac{e^{-j \theta} s+\alpha}{\alpha e^{-j \theta} s+1}\right)$
then
$\omega_{s}=\tan ^{-1}\left(\frac{\left(1-\alpha^{2}\right) \sin \theta_{s}}{-2 \alpha-\left(1+\alpha^{2}\right) \cos \theta_{s}}\right)$

From this we obtain
$\omega_{s}=.2616 \pi$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

