
COMPUTATION OF DISCRETE FOURIER TRANSFORM - PART 2

1. Lecture 19 - 49 minutes
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Flow-graph of
complete decimation-
in-frequency decompo-
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2. Comments

In this lecture we continue the discussion which was begun last time,

in which we had developed a flow chart for efficient computation of

the DFT. Here we discuss the implication of that flow chart for

"in-place" computation if the input data is stored in a "bit reversed"

order. This bit-reversed order arises as a natural consequence of the

way in which that flow-graph was derived, i.e. by dividing the input

into its even and odd numbered points, then dividing each of those in

a similar manner, etc.

By rearranging the flow-graph it is possible to generate a number of

other algorithms. For example, the input ordering can be rearranged

so that bit reversal is not required. However, the advantage of in-place

computation is lost. Another rearrangement, commonly referred to as the

Singleton algorithm results in a flow-graph structure which is identical

from stage to stage. This form is useful when the data is stored in

sequential memory such as shift registers or disk rather than random

access memory.

The above algorithms are collectively referred to as "decimation-in-

time" algorithms because they were based on successive subdivisions

of the input sequence. A companion set of algorithms referred to as

"decimation-in- frequency " are based on successive subdivisions of the

output. We conclude this lecture by introducing this class of algorithms,

obtaining in particular, the basic flow-graph representing this algorithm.

In the next lecture we consider a number of rearrangements of this

flow-graph.

3. Reading

Text: Section 9.3.1 (page 592) and 9.3.2. Also section 9.4 up to,

but not including section 9.4.1.

4. Problems

Problem 19.1

Consider a 16-point sequence x(O), x(l),..., x(15). List the sequence

in bit-reversed order.

Problem 19.2

(a) Draw the flow-graph for a four-point decimation-in-time FFT

algorithm utilizing the butterflies of Figure 9.9 of the text and with

the input in bit-reversed order, the output in normal order, and
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representing in-place computation.

(b) Rearrange the flow graph of part (a) so that it still corresponds

to in-place computation but with the input in normal-order and the

output in bit-reversed order.

Problem 19.3

Consider the FFT algorithm for N a power of 2, implemented in the

form characterized by Figure 9.20 (page 602) in the text. We are assuming

that N is an arbitrary power of 2, not that N=8. In indexing through

the data in an array, we shall assume that points in an array are

stored in consecutive complex (double) registers numbered 0 through

N - 1. The arrays are numbered 0 through log 2 N. The array holding

the initial data is the zeroth array. The output of the first stage of
butterflies is the first array, etc. All of the following questions

threlate to the computation of the m- array where 1,< m < log 2 N. The

answer should be in terms of m. All of the questions can be answered

by generalizing the results for N = 8.

(a) How many butterflies are to be computed?

(b) What are the powers of WN involved in computing the m- array

from the (m - 1)st array?

(c) What is the separation between the addresses of the two complex

input points to a butterfly?

(d) What is the separation between the addresses of the first points

of butterflies utilizing the same coefficients? Note that the butterfly
computation for this algorithm is of the form of Fig. 9.21 in the text,
i.e. the coefficient multiplication is applied at the output of the
butterfly.

*
Problem 19.4

When implementing a decimation-in-time FFT algorithm, the basic

butterfly computation is as shown in the flow graph of Figure

P19.4-1

Xm + P) = X (p) + Wr X (q)m 1m N m

Xm+ (q) = X (p) -W X (q)m+1m N m

In using fixed-point arithmetic in implementing the computations it is

commonly assumed that all numbers are scaled to be less than unity.

Thus we must be concerned with overflow in the butterfly computations.

(a) Show that if we require
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IX(P)I< |m

then overflow cannot occur in the butterfly computation; i.e.,

Re [X m+(p)] < 1, Im [X (p)] < 1, Re [X (q)]< 1,

and

X m(p)

Im [Xm+1 (q)] < 1

X m(q) -

Figure P19. 4-1

(b) In practice, it is easier and more convenient to require

Re[Xm(p)I ,<

2Re[Xm

ImX 2

Im[Xm(qI m~lJ 2

Are these conditions sufficient to ensure that overflow cannot

occur in the butterfly computation? Justify your answer.

*
Problem 19.5

The FORTRAN program shown below implements the decimation-in-time

algorithm of Figure 9.10 of the text. In the subroutine FFT(X, M), X is

a complex array of dimension N that contains initially the input sequence

x(n) and finally contains the transform X(k). The quantity M is an

integer, M = log 2 N.

(a) From a cursory inspection of the program indicate which lines of

code are concerned with (1) bit reversal, (2) recursive computation

of the complex exponential multipliers, and (3) the basic butterfly

computation.

(b) Three errors have been inserted into the program as it is given

here. Find these errors and make appropriate corrections to the

FORTRAN code.
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SUBROUTINE FFT(X,M) 0001

COMPLEX X(1024), U,W,T 0002

N = 2**M 0003

NV2 = N/2 0004

NMl = N - 1 0005

J = 1 0006

DO 7 I = 1,NM1 0007

T = X(J) 0008

X(J) = X(I) 0009

X(I) = T 0010

5 K = NV2 0011

6 IF(K.GE.J) GO TO 7 0012

J = J- K 0013

K = K/2 0014

GO TO 6 0015

7 J = J + K 0016

PI = 3.14159265358979 0017

DO 20 L = 1,M 0018

LE = 2**L 0019

LEl = LE/2 0020

U = (1.0,0.0) 0021

W = CMPLX(COS(PI/FLOAT(LEl)), SIN(PI/FLOAT(LEl))) 0022

DO 20 J = 1, LEl 0023

DO 10 I = J,N,LE 0024

IP = I + LE 0025

T = X(IP)*U 0026

X(IP) = X(I) - T 0027

10 X(I) = X(I) + T 0028

20 U = U*W 0029

RETURN 0030

END 0031
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