
NETWORK STRUCTURES FOR IIR SYSTEMS

1. Lesson 12 - 40 minutes
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Transposition theorem
for signal flow-graphs.
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2. INTERCHANGE INPUT AND OUTPUT'

TRANSFER FUNCTION REMAINS THE SAME
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Factorization of the
z-transform for the
cascade structure.

Cascade Structure
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C Parallel form realiza-
tion with real and
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2. Comments

In the previous lecture we introduced the representation of linear
digital networks. There are many network structures which can be used
to implement a specified transfer function. While all of these
structures are mathematically equivalent, they may have different
implications for a hardware or software realization of a digital filter.

In this lecture we discuss some of the more common structures,
specifically the direct-form, cascade form and parallel form. The
notion of canonic structures, i.e. structures utilizing the minimum

possible number of delays is also considered. Since delay branches in

the flow graph represent memory registers in a hardware implementaion
it is generally desireable to minimize the number of delays in a structure.

Implementation of a digital filter inevitably involves trade-offs,
however, and the importance of minimizing delays may need to be balanced

against other considerations.

We also present in this lecture the transposition theorem for signal-flow
graphs. This theorem is useful in obtaining new structures. For

example we present in this lecture the direct-form II structure and its
transpose. Both of these structures are canonic in the number of delays.

They differ in the order in which the poles and zeros are implemented,

a consideration which is often important when implementing a digital

filter with a small register length.

3. Reading

Text: Sections 6.3 (page 300) and 6.4.
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4. Problems

Problem 12.1

Consider the discrete-time linear causal system defined by the difference

equation

3 11
y(n) - y(n - 1) + 1y(n - 2) = x(n) + 1x(n - 1)

Draw a signal flow graph to implement this system in each of the

following forms:

(a) Direct form I.

(b) Direct form II.

(c) Cascade.

(d) Parallel.

For the cascade and parallel forms use only first-order sections.

Problem 12.2

In Figure P12.2-1 (a)-(c) several networks are shown. Determine the

transpose of each and verify that in each case the original and

transpose networks have the same transfer function.

x~n! y(n)

(a)

x(n) ~ ywn

(b)

x(n)
a b c

y(n)

(c)

Figure P12.2-1

Problem 12.3

In Figure P12.3-1 (a)-(f) six digital networks are shown. Determine

which one of the last five i.e., (b) through (f) has the same transfer

function as (a). You should be able to eliminate some of the

possibilities by inspection.
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Problem 12.4
-l

The system with transfer function H(z) = z -a is an allpass system,
1 - az

i.e. the frequency response has unity magnitude.

(a) Draw a network realization of this system in direct II form; and

indicate in particular the number of delay branches required and the

number of branches requiring multiplication by other than +1 or -1.

(b) An alternative implementation is suggested by noting that the

difference equation of the allpass system can be expressed as

y(n) - ay(n - 1) = x(n - 1) - a x(n)

or equivalently,

y(n)=a [y(n - 1) - x(n)] + x(n - 1)

Draw a network realization of this equation requiring two delay

branches but only one branch with a multiplication by other than

+1 or -1.

The primary disadvantage to the network in (b) as compared to that in

(a) is that two delay brances are required. In some applications,

however, it is necessary to implement a cascade of allpass sections.

For N allpass sections it is possible to utilize a realization of each

in the form determined in part (b) but using only (N + 1) delay branches.

This is accomplished essentially by sharing a delay between sections.

(c) Consider the allpass system with transfer functions

z~- a z~ - b
H(z) = z a z b

1 - az 1  1 - bz

Draw a network realization of this system by "cascading" two networks

of the form obtained in part (b) in such a way that only three delay

branches are required.

*

Problem 12.5

Speech production can be modeled as a linear system representing the

vocal cavity, excited by puffs of air released through the vocal cords.

In synthesizing speech on a digital computer, one approach is to

represent the vocal cavity as a connection of cylindrical acoustic tubes

with equal length but with different cross-sectional areas, as depicted

in Figure 12.5-1. Let us assume that we want to simulate this system

in terms of the volume velocity representing air flow. The input is

coupled into the vocal tract through a small constriction, the vocal
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cords. We will assume that the input is represented by a change in

volume velocity at the left end, but that the boundary condition for

traveling waves at the left end is that the net volume velocity must

be zero. This is analogous to an electrical transmission line driven

by a current source. The output is considered to be the volume

velocity at the right end. We assume that each section is lossless.

tL

A1 A2 DA3A4

Figure P12.5-1-

At each interface between sections a forward-traveling wave is

transmitted to the next section with one coefficient and reflected

as a backward-traveling wave with a different coefficient. Similarly,

a backward-traveling wave arriving at an interface is transmitted

with one coefficient and reflected with a different coefficient.

Specifically, if we consider a forward-traveling wave f+ in a tube

with cross-sectional area A1 arriving at the interface with a tube of

cross-sectional area A2, then the forward-traveling wave transmitted

is (1 + a)f+ and the reflected wave is af+ where

A2 - A1
A 1 + A2

Consider the length of each section to be 3.4 cm with the velocity of
sound in air 34,000 cm/s. Draw a digital network that will implement
the four-section tube in Figure P12.5, with the output sampled at a
20-kHz rate.

In spite of the lengthy introduction, this is a reasonably straight-
forward problem. If you find it hard to think in terms of acoustic
tubes, think in terms of transmission-line sections with different
characteristic impedances. Just as with transmission lines, it is
difficult to express the impulse response in closed form. Draw the
network directly from physical considerations, in terms of forward-
and backward-traveling pulses in each section.
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