
COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 3

Solution 20.1

6.10 6.12 6.13 6.14 6.18 6.21 6.22 6.23

(1) yes yes no no yes yes no no

(2) no yes yes no yes no yes yes

(3) yes no yes yes no yes yes no

(4) no yes no no no yes no no

(5) no no no yes no no no yes

Solution 20.2

(a) As discussed in the lecture, the coefficients in the inverse

DFT are the complex conjugates of the coefficients in the DFT. In

addition the inverse DFT has associated with it a scale factor of

1/N. Consequently to modify any of the radix-2 algorithms to

implement an inverse DFT, we replace the coefficients by their complex

conjugates and apply a scale factor of (1/N) to the output. An

alternative is to use the result of problem 2 lesson 18.

(b) and (c) The two algorithms which are particularly convenient when

data is to be stored in and accessed from sequential memory such as

disk are represented by the flow-graphs of Figures 9.16 and 9.24 of

the text. Since the flow-graph of Figure 9.24 has data in

normal order as its input, and the flow-graph of Figure 9.16 of the

text has data in normal order as its output , it is most convenient

to use the flow-graph of Figure 9.24 for the computation of the DFT and

the flow-graph of Figure 9.16 for the computation of the inverse DFT.

(d) In the algorithm of Figure 9.24, successive points in an array

are computed by combining data from the first half and last half of

the previous array. Consequently the first half of the input data

should be stored on track A and the second half on track B. In

S20.1

computing the first array, the first half of the computed points are

stored in track C and the second half on track D. In computing the

second array we combine the data on tracks C and D, storing the

first half of the results on track A and the second half on track B.

(e) 	There are log2N arrays to be computed. Thus, if log 2N is even,

are
the results are on tracks A and B. If log 2N is odd, the results

on tracks C and D. Furthermore, the DFT values are stored on these

tracks in bit-reversed order. For log 2N even, the even numbered

points are in bit-reversed order on track A and the odd numbered

points are in bit-reversed order on track B.

(f) The algorithm of Figure 9.16 which is to be used for the

inverse transform assumes that the input is in bit-reversed order.

Consequently it is not necessary to sort the DFT values into normal

order. In the algorithm of Figure 9.16 the computation of an array

involves combining successive points in the previous array to

obtain results in the first half and last half of the array being

computed. Assume that the results from the computation of the DFT are

stored on tracks A and B. As discussed in (e), the first half of

these points (the even numbered points) are on track A and the second

half (the odd numbered points) are on track B.

In implementing the flow-graph of Figure 9.16 we first combine

successive points from track A generating results for the first and

last half of the first array. When track A is completed, we

combine successive points from track B. Thus in using the output of

the flow-graph of Figure 9.24 as the input to the flow-graph of

Figure 9.16 no rearrangement of data is necessary. The way in which

data is accessed and stored is however different for the two algorithms.

Solution 20.3

Let m denote a memory location (0 < m < N - 1) and m the corresponding

bit-reversed location. According to the flow-chart of Figure P20.3-2

when counter A is equal to m, the data in locations m and m are

interchanged and when counter A is equal to m the data in locations

m and m are again interchanged. Consequently at the end of the

program in Vigure P20.3-2 the data is still in normal order. To

correct this it is necessary to ensure that an exchange between a

memory location and its bit-reversed counterpart is made only once.

One possible correction to the flow-chart of Figure S20.3-1 is

indicated in Figure S20.3-1. This correction also takes into

account the obvious fact that when m = m no exchange is necessary.

S20.2

Figure S20.3-1

Solution 20.4

With N = 9 we divide x(n) into three subsequences each containing

three points as indicated in Figure S20.4-1

1'9? 'TIlT ~
A B C A B C A B C

Figure S20.4-1

Thus,

S20.3

8 2 2
X(k) = x(n)W9nk =. x3r)W93rk +E x(3r + l)W9 (3r+l)k

n=0 r=0 r=0

Subsequence A Subsequence B

+Ex(3r + 2)W (3r+2)k

r=0

Subsequence C

Using the fact that W93
= W3
2 2 2

X(k) = x(3r) W3rk + W k x(3r + 1) W3 rk + W 2kEx3r + 2) W3rk

r=0r r0O

The resulting flowgraph is shown in Figure S20.4-2.

x (0) X(0)

3~X (1)

WW- W2 3 9

x (6)

3
x(1) X(3)

3 X g(44
x(4)
 W

3 3
x (7) X(5) W

9

3

x (2) X(6) 6

3

x (3) X(7) 7

x (5) X(8)

3 9

Figure S20.4-2

*

Solution 20.5

(a) Assuming that we implement as multiplies all multiplications by

WN in the flow-graph of Figure 9.20 of the text there are a total of

Slog2N complex multiplications required. Thus by eliminating H

complex multiplications the percentage reduction is

S20.4

(N/2) 100% = 1 100%

(T)log2N log 2N

(b) Change line 5 to DO 20 L = 1, M - 1

insert after line 16: DO 22 I=1,N,2

IP=I+l

T=X(I)+X(IP)

X(IP)=X(I)-x(IP)

22 X(I)=T

(c) 	 SUBROUTINE FFT(XI,XR,M)

DIMENSION XI(1024), XR(1024)

N=2**M

PI=3.14159265358979

DO 20 L=1,M

LE=2** 	(M+1-L)

LE1=LE/2

UR=1.0

UI=0.0

WR=COS(PI/FLOAT(LEl))

WI=-SIN(PI/FLOAT(LEl))

DO 20 J=1,LE1

DO 10 I = J,N,LE

IP=I+LE1

TR=XR(I)+XR(IP)

TI=XI(I)+XI(IP)

TMR=XR(I)-XI(IP)

TMI=XI 	(I) -XI (IP)

XR(IP)=TMR*UR-TMI*UI

XI(IP)=TMR*UI+TMI*UR

XR(I)=TR

10 	 XI(I)=TI

TR=UR*WR-UI*WI

UI=UR*WI+UI*WR

20 UR=TR

NV2=N/2

NMl=N-1

J=1

DO 30 I=1,NM1

IF(I.GE.J) GO TO 25

TR=XR(J)

TI=XI(J)

S20.5

XR(J)=XR(I)

XI(J)=XI(I)

XR(I) =TR

XI (I) =TI

25 K=NV2

IF(K.GE.J) GO TO 30

J=J-K

K=K/2

GO TO 26

30 J=J+K

RETURN

END

S20.6

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing
Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

