DISCRETE-TIME SIGNALS AND SYSTEMS, PART 1

Solution 2.1
$x(n)$ is periodic if $x(n)=x(n+N)$ for some integer value of N. For the sequence in (a),
$x(n+N)=A \cos \left(\frac{3 \pi}{7} n+\frac{3 \pi}{7} N-\frac{\pi}{8}\right)$
$x(n+N)=x(n)$ if $\frac{3 \pi}{7} N$ is an integer multiple of 2π. The smallest value of N for which this is true is $N=14$. Therefore the sequence in (a) is periodic with period 14.

For the sequence in (b),
$x(n+N)=e^{j\left(\frac{n}{8}+\frac{N}{8}-\pi\right)}$

$$
=e^{j\left(\frac{n}{8}-\pi\right)} e^{j \frac{N}{8}}=x(n) e^{j \frac{N}{8}}
$$

The factor $e^{j \frac{N}{8}}$ is unity for ($N / 8$) an integer multiple of 2π.
This requires that
$\frac{N}{8}=2 \pi R$
where N and R are both integers. This is not possible since π is an irrational numher. Therefore this sequence is not periodic.

Solution 2.2
$x(n)=-2 \delta(n+3)-\delta(n)+3 \delta(n-1)+2 \delta(n-3)$

Solution 2.3
Each of the systems given can be tested against the definitions of linearity and time invariance. For example, for
(a), $T\left[x_{1}(n)\right]=2 x_{1}(n)+3$

$$
T\left[x_{2}(n)\right]=2 x_{2}(n)+3
$$

Since $T\left[a x_{1}(n)+b x_{2}(n)\right]=2\left[a x_{1}(n)+b x_{2}(n)\right]+3$
and $a T\left[x_{1}(n)\right]+b T\left[x_{2}(n)\right]=2 a x_{1}(n)+2 b x_{2}(n)+3(a+b)$
The system is not linear. The system is, however, shift-invariant since $T\left[x\left(n-n_{0}\right)\right]=2 x\left(n-n_{0}\right)+3=y\left(n-n_{0}\right)$.

In a similar manner we can show that:
(b) is linear but not shift-invariant
(c) is not linear but is shift-invariant
(d) is linear and shift-invariant

Solution 2.4
To determine $y(n)$ we evaluate the convolution sum eq. (2.39) of the text. For part (a), the sequences $x(k)$ and $h(n-k)$ are indicated below as functions of k :

n

Figure S2.4-1

Since $h(n-k)$ is zero for $k>n$, and is unity for $k<n$,
$y(n)=\sum_{k=-\infty}^{+\infty} x(k) h(n-k)=\sum_{k=-\infty}^{n} x(k)$
as sketched below:

Figure s2.4-2

Part (b) can likewise be done graphically. Alternatively since $h(n)=\delta(n+2) \quad$,
$y(n)=\sum_{k=-\infty}^{+\infty} h(k) x(n-k)$

$$
=\sum_{k=-\infty}^{+\infty} \delta(k+2) x(n-k)
$$

Since $\delta(k+2)=0$ except for $k=-2$, and is unity for $k=-2$ $y(n)=x(n+2)$.

For part (c) $\mathrm{x}(\mathrm{k})$ and $\mathrm{h}(\mathrm{n}-\mathrm{k})$ are as sketched below:

$h(n-k)=\beta^{(n-k)} u(n-k)$

Figure S2.4-3

Graphically we see that for $n<0, x(k) h(n-k)$ is zero and consequently $y(n)=0, n<0$. For $n \geq 0$

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{n} \alpha^{k} \beta^{n-k}=\beta^{n} \sum_{k=0}^{n}(\alpha / \beta)^{n} \\
& =\beta^{n} \frac{1-(\alpha / \beta)^{n+1}}{1-(\alpha / \beta)}=\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}
\end{aligned}
$$

Consequently for all n,
$y(n)=\left[\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}\right] u(n)$ which is a decaying exponential for $n \geq 0$.

The answer for part (d) is:
$\longrightarrow \longrightarrow(n(n)=x(n-2)-x(n-3)=\delta(n-2)$

Figure S2.4-4

Solution 2.5*
$x(n) * h_{1}(n)=x(n) *[\delta(n)-\delta(n-3)]=x(n)-x(n-3) \quad$.
Therefore with $x(n)$ as a unit step, $x(n) * h_{1}(n)$ is:

Convolving $w(n)$ graphically with $h_{2}(n)$

Figure S2.5-1
For $n<0 h_{2}(k) w(n-k)=0$
For $n=0 y(n)=1$
For $n=1 y(n)=1+(.8)$
For $n \geq 2 y(n)=(.8)^{n-2}+(.8)^{n-1}+(.8)^{n}$

Figure S2.5-2
(b) The convolution of $h_{1}(n)$ and $h_{2}(n)$ is:
$h(n)=h_{1}(n) * h_{2}(n)=(.8)^{n} u(n)-(.8)^{(n-3)} u(n-3)$

Figure S2.5-3

The convolution of this result with a unit step results in

$$
\begin{aligned}
& -y(n)=\sum_{k=-\infty}^{n} h(k) \\
& \text { or } \\
& y(n)=0 \quad n<0 \\
& y(0)=1 \\
& Y(1)=1+.8 \\
& Y(2)=1+(.8)+(.8)^{2} \\
& Y(3)=1+.8+(.8)^{2}+(.8)^{3}-1=.8+(.8)^{2}+(.8)^{3} \\
& y(4)=1+.8+(.8)^{2}+\left[(.8)^{3}-1\right]+\left[(.8)^{4}-.8\right] \\
& =(.8)^{2}+(.8)^{3}+(.8)^{4}
\end{aligned}
$$

etc.

Solution 2.6*

The fact that $x(n)=z^{n}$ is an eigenfunction follows from the convolution sum. Specifically

$$
\begin{align*}
y(n) & =\sum_{k=-\infty}^{+\infty} h(k) x(n-k)=\sum_{k=-\infty}^{+\infty} h(k) z^{(n-k)} \\
& =z^{n} \sum_{k=-\infty}^{+\infty} h(k) z^{-k} \tag{S2.6-1}
\end{align*}
$$

Since the summation in the equation (S2.6-1) does not depend on n, it is simply a constant for any given z.
While the complex exponential z^{n} is an eigenfunction of any linear shift-invariant system, $z^{n} u(n)$ is not. For example, let $h(n)=\delta(n-1)$. Then with $x(n)=z^{n} u(n), y(n)=z^{n-1} u(n-1)$, which is not a complex constant times $x(n)$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

