
COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 3

1. Lecture 20 - 45 minutes

x (0)

X(2)

Computation of even
and odd numbered DFT
values.

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

20.1

OPPENHEIM 6-18&.SCHAFER

Flow-graph .of complete

decimation-in-frequency

decomposition of an

eight point DFT

computation.

FFT flow-graph for

decimation-in-time

algorithm.

Rearrangement of the

decimation-in-frequency

flow-graph d. The in­

put is now in bit-

reversed order and the

output is in normal

order.

&SCHAFEROPPENHEIM 6-21

20.2

I

x (0)

X(4)

X(2)

X(6)

x(1)

X(5)

X(3)

X(7)

OPPENHEIM 6-12
& SCHAFER

OPPENHEIM 6-22
&SCHAFER

Rearrangement of e so

that the input is in

normal order and out­

put in bit-reversed

order.

Rearrangement of d so

that both input and

output are in normal

order.

Rearrangement of d so

that geometry is

identical in each stage.

OPPENHEIM 6-23
9 SCHAFER

20.3

x(0) >x (0)
WO wo wo Decimation-in-time

x(4) N N N X(1) flow-graph for which
the geometry is

x(2) X(2) identical for each
stage.

x(6) X (3)

x(X) (4)

x(5) ~ - X (5)

x(3) -1 -1 -1 x(6)

w 0 w 2w3

x(7) N N oX (7)

OPPENHEIM 6-14& SCHAFER

J­

j27T -j2r

Correction: On (Fig. a.) WN is written as e it should be e

2. Comments

In the previous lecture we introduced a class of FFT algorithms referred

to as "decimation-in-frequency." This class of algorithms is developed

on the basis of successive subdivisions of the output, as compared

with the "decimation-in-time" algorithms which are based on successive

subdivisions of the input. While the flowgraph for decimation-in­

frequency as initially derived represents an in-place computation with

the input in normal order and the output in bit-reversed order, there

are a variety of rearrangements of the flowgraph just as there were

for the "decimation-in-time" algorithms. The various forms of the

"decimation-in-frequency" flowgraphs are related to the decimation-in­

time" flowgraph through the transposition theorem. The choice between

the various forms of the FFT algorithm is generally based on such

considerations as the importance of in-place computation, whether it is

more convenient to require bit-reversal at the input or output, order

in which coefficients are stored, etc. For example if we intend to

follow a DFT by an inverse DFT it is generally preferable to begin with

an algorithm for which the input is in normal order and the output

is in bit-reversed order. If for the inverse transform a form of the

algorithm is used which requires bit-reversed input data and generates

the output in normal order, it is never necessary to rearrange the

order of the data.

Throughout the discussion of the FFT algorithms we have concentrated on

"radix-2" algorithms, i.e. we have assumed that N is a power of two.

More generally, efficient algorithms for the computation of the DFT

can be utilized when N is decomposable as a product of factors. We

20.4

conclude this lecture with a brief introduction to these more general

classes of FFT algorithms.

3. Reading

Text: Section 9.4 (page 599), and section 9.5.

4. Problems

Problem 20.1

The basic radix-2 FFT algorithms based on decimation-in-time are

indicated in the text, Figures 9.10, 9.14, 9.15, 9.16. The basic

radix-2 FFT algorithms based on decimation-in-frequency are

indicated in the text Figures 9.20, 9.22, 9.23, 9.24. For each

of these eight flow-graphs indicate whether or not each of the following

following properties is true or not:

(1) Represents an in-place computation

(2) Input is in normal order

(3) Output is in normal order

(4) Coefficients should be stored in bit-reversed order

(5) Accessing of the data is identical for every array

Problem 20.2

We wish to implement a filter on a small computer by evaluating the

DFT of input data, multiplying by the DFT of the unit-sample response

and then computing the inverse DFT. The length of input data is

a power of two but is sufficiently large that it cannot be stored in

random-access memory. Consequently we wish to choose an algorithm

which permits the data to be stored in and accessed from disk memory.

(a) How would you modify any one of the radix-2 algorithms discussed

in the text so that it computes the inverse DFT rather than the DFT?

(b) Which of the eight radix-2 algorithms listed in problem 20.1

would it be most convenient to use for the computation of the DFT?

(c)- Which of the eight radix-2 algorithms listed in problem 20.1

would you modify according to part (a) and use for the inverse DFT?

(d) In implementing the transform and inverse transform, let us

assume that the disk is divided into four tracks which we'll refer

to as A, B, C, and D. The input data will initially be stored on

20.5

tracks C and D. With the algorithm which you chose in (b) , how

should the input data be divided between tracks A and B?

(e) After completing the computation of the DFT, on what disk

tracks and in what order is the result stored?

(f) Assume that the DFT values have been multiplied by the DFT

of the unity sample response and the product is stored in the same

order as were the DFT values in (c). Do these values have to be

rearranged in any way before utilizing the algorithm chosen in (c)

for the inverse DFT?

Problem 20.3

In rearranging data from normal order to bit-reversed order, a common

procedure is to program a counter which counts sequentially in normal

order and a second counter which counts sequentially in bit-reversed

order. On most computers, of course, a normal counter usually

corresponds to an index register which is incremented by unity. Most

computers do not have a bit reversed counter but they are easy to

implement. One possible flow-chart to implement a bit-reversed

counter is show in Figure P20.3-1.

Enter with bit-
reversed number X

No

Is
most

significant nX+(N/2)-X

a one

yes

Is
2nd most

X+(N4-N/2)-X NO sgnicant
a one

yes

Is
3rd most

-- X+(N/8-N/4-N/2)-X NO sigifcnt

a one

Yes

Is
least

X+(- ---2--- N/)- signifcnt

a one
Trying to count Past

(N- 1) without
yes enough bits

Figure P20.3-1

20. 6

Let us assume that we have a normal counter (counter A) and a bit-

reversed counter (counter B). In Figure P20.3-2 is shown a flow-chart

intended to sort data from normal order to bit-reversed order.

Determine whether a program implementing this flow-chart will sort the

data as desired. If not, insert the necessary corrections into the

flow-chart.

Figure P20.3-2

Problem 20.4

Draw the flow diagram for a nine-point (i.e., 3 x 3) decimation-in­

time FFT algorithm.

20.7

*
Problem 20.5

The FORTRAN program shown in Figure P20.5-1 is an implementation of the

decimation-in-frequency algorithm depicted in Figure 6.18 of the text.

The program evaluates the DFT:

N-1

X(k) = x(n)e-j(2 Tr/N)kn, k 0, l,...,N

n=0

SUBROUTINE FFT(X,M) 0001

COMPLEX X(1024), U,W,T 0002

N = 2**M 0003

PI 3.14159265358979 0004

DO 20 L = 1,M 0005

LE = 2**(M + 1 - L) 0006

LEl = LE/2 0007

U = (1.0,0.0) 0008

W = CMPLX(COS(PI/FLOAT(LEl)), -SIN(PI/FLOAT(LEl))) 0009

DO 20 J =1, LEl 0010

DO 10 I = J,N,LE 0011

IP = I+LEl 0012

T X(I) + X(IP) 0013

X(IP) (X(I) - X(IP))*U 0014

10 X(I) = T 0015

20 U = U*W 0016

NV2 = N/2 0017

NMl = N- 1 0018

J = 1 0019

DO 30 I = 1,NM1 0020

IF(I.GE.J) GO TO 25 0021

T = X(J) 0022

X(J) = X(I) 	 0023

X(I) = T 0024

25 K = NV2 0025

26 	 IF(K.GE.J) GO TO 30 0026

J = J - K 0027

K = K/2 0028

GO TO 26 0029

30 	 J = J + K 0030

RETURN 0031

END 0032

Figure P20.5-1

20.8

In the subroutine FFT(X,M) X is a complex array of dimension N that

contains initially the input sequence x(n) and finally contains the

transform X(k). The quantity M is an integer, M = log 2N.

This program is a straightforward implementation of the flow-graph

of Fig. 9.20 of the text. The program is very elegant but not as

efficient as it could be. Greater efficiency can be obtained at

the cost of a more complex program.

A significant increase in efficiency is suggested by noting that in

the last stage of the flow graph in Fig. 6.18, the complex multipliers

are all unity. Thus if the last stage is implemented separately, we

can eliminate N/2 complex multiplications

(a) What is the percentage reduction in multiplications that results?

(b) Modify the program to implement this saving in multiplications.

(c) Many small computers have FORTRAN compilers without the capa­

bility of complex arithmetic. Modify the given program so that only

real operations are involved. That is, using the present subroutine

as a guide, write a subroutine

FFT(XR,XIM)

where XR and XI are real arrays of dimension N which initially contain

the real part and the imaginary part of the input and finally the

real and imaginary parts of the transform.

20.9

SOME CONCLUDING REMARKS

With lesson 20 we conclude this introductory set of lessons on digital

signal processing. It has often been said that the purpose of a

course is to uncover rather than to cover a subject and that

description applies particularly in this case. Throughout the

lectures I have tried to concentrate on the basic fundamentals of

digital signal processing to provide a firm background for proceeding

to applications and advanced topics. As you know, we have only

covered the first six chapters in the text and omitted the more

advanced topics from some of those. I would like to encourage you

to take the time to look over the parts of those six chapters which

were not assigned reading. I would also like to encourage you to

continue on through the text; in chapters 10 and 11, in particular,

you will find frequent reference to applications.

With the first six chapters as background, I feel that you will find

much of the technical literature in the field of digital signal

processing to be interesting and understandable. As I mentioned in

the introductory lecture, this material has important applications

in a wide variety of areas, and I would like to encourage you to

explore some of these applications and also consider whether some

of the techniques that we have discussed have application to your

own area of interest. While we have only been able to present

the fundamentals, I hope that this set of lectures will serve to

open the door for you to an exciting, dynamic,.and important field.

20.10

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing
Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

