
COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 3


1. Lecture 20 - 45 minutes 
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2. Comments


In the previous lecture we introduced a class of FFT algorithms referred


to as "decimation-in-frequency." This class of algorithms is developed


on the basis of successive subdivisions of the output, as compared


with the "decimation-in-time" algorithms which are based on successive


subdivisions of the input. While the flowgraph for decimation-in­


frequency as initially derived represents an in-place computation with


the input in normal order and the output in bit-reversed order, there


are a variety of rearrangements of the flowgraph just as there were


for the "decimation-in-time" algorithms. The various forms of the


"decimation-in-frequency" flowgraphs are related to the decimation-in­


time" flowgraph through the transposition theorem. The choice between


the various forms of the FFT algorithm is generally based on such


considerations as the importance of in-place computation, whether it is


more convenient to require bit-reversal at the input or output, order


in which coefficients are stored, etc. For example if we intend to


follow a DFT by an inverse DFT it is generally preferable to begin with


an algorithm for which the input is in normal order and the output


is in bit-reversed order. If for the inverse transform a form of the


algorithm is used which requires bit-reversed input data and generates


the output in normal order, it is never necessary to rearrange the


order of the data.


Throughout the discussion of the FFT algorithms we have concentrated on


"radix-2" algorithms, i.e. we have assumed that N is a power of two.


More generally, efficient algorithms for the computation of the DFT


can be utilized when N is decomposable as a product of factors. We
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conclude this lecture with a brief introduction to these more general

classes of FFT algorithms.


3. Reading


Text: Section 9.4 (page 599), and section 9.5.


4. Problems


Problem 20.1


The basic radix-2 FFT algorithms based on decimation-in-time are

indicated in the text, Figures 9.10, 9.14, 9.15, 9.16. The basic

radix-2 FFT algorithms based on decimation-in-frequency are

indicated in the text Figures 9.20, 9.22, 9.23, 9.24. For each


of these eight flow-graphs indicate whether or not each of the following

following properties is true or not:


(1) Represents an in-place computation


(2) Input is in normal order


(3) Output is in normal order


(4) Coefficients should be stored in bit-reversed order


(5) Accessing of the data is identical for every array


Problem 20.2


We wish to implement a filter on a small computer by evaluating the


DFT of input data, multiplying by the DFT of the unit-sample response


and then computing the inverse DFT. The length of input data is


a power of two but is sufficiently large that it cannot be stored in


random-access memory. Consequently we wish to choose an algorithm


which permits the data to be stored in and accessed from disk memory.


(a) How would you modify any one of the radix-2 algorithms discussed


in the text so that it computes the inverse DFT rather than the DFT?


(b) Which of the eight radix-2 algorithms listed in problem 20.1


would it be most convenient to use for the computation of the DFT?


(c)- Which of the eight radix-2 algorithms listed in problem 20.1


would you modify according to part (a) and use for the inverse DFT?


(d) In implementing the transform and inverse transform, let us


assume that the disk is divided into four tracks which we'll refer


to as A, B, C, and D. The input data will initially be stored on
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tracks C and D. With the algorithm which you chose in (b) , how 

should the input data be divided between tracks A and B?


(e) After completing the computation of the DFT, on what disk


tracks and in what order is the result stored?


(f) Assume that the DFT values have been multiplied by the DFT


of the unity sample response and the product is stored in the same


order as were the DFT values in (c). Do these values have to be


rearranged in any way before utilizing the algorithm chosen in (c)


for the inverse DFT?


Problem 20.3


In rearranging data from normal order to bit-reversed order, a common


procedure is to program a counter which counts sequentially in normal


order and a second counter which counts sequentially in bit-reversed


order. On most computers, of course, a normal counter usually


corresponds to an index register which is incremented by unity. Most


computers do not have a bit reversed counter but they are easy to


implement. One possible flow-chart to implement a bit-reversed


counter is show in Figure P20.3-1.
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Let us assume that we have a normal counter (counter A) and a bit-


reversed counter (counter B). In Figure P20.3-2 is shown a flow-chart


intended to sort data from normal order to bit-reversed order.


Determine whether a program implementing this flow-chart will sort the


data as desired. If not, insert the necessary corrections into the


flow-chart.


Figure P20.3-2


Problem 20.4


Draw the flow diagram for a nine-point (i.e., 3 x 3) decimation-in­


time FFT algorithm.
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* 
Problem 20.5


The FORTRAN program shown in Figure P20.5-1 is an implementation of the


decimation-in-frequency algorithm depicted in Figure 6.18 of the text.


The program evaluates the DFT:


N-1 

X(k) = x(n)e-j( 2 Tr/N)kn, k 0, l,...,N 

n=0 

SUBROUTINE FFT(X,M) 0001 

COMPLEX X(1024), U,W,T 0002 

N = 2**M 0003 

PI 3.14159265358979 0004 

DO 20 L = 1,M 0005 

LE = 2**(M + 1 - L) 0006 

LEl = LE/2 0007 

U = (1.0,0.0) 0008 

W = CMPLX(COS(PI/FLOAT(LEl)), -SIN(PI/FLOAT(LEl))) 0009 

DO 20 J =1, LEl 0010 

DO 10 I = J,N,LE 0011 

IP = I+LEl 0012 

T X(I) + X(IP) 0013 

X(IP) (X(I) - X(IP))*U 0014 

10 X(I) = T 0015 

20 U = U*W 0016 

NV2 = N/2 0017 

NMl = N- 1 0018 

J = 1 0019 

DO 30 I = 1,NM1 0020 

IF(I.GE.J) GO TO 25 0021 

T = X(J) 0022 

X(J) = X(I) 	 0023 

X(I) = T 0024 

25 K = NV2 0025 

26 	 IF(K.GE.J) GO TO 30 0026 

J = J - K 0027 

K = K/2 0028 

GO TO 26 0029 

30 	 J = J + K 0030 

RETURN 0031 

END 0032 

Figure P20.5-1
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In the subroutine FFT(X,M) X is a complex array of dimension N that 

contains initially the input sequence x(n) and finally contains the 

transform X(k). The quantity M is an integer, M = log 2N. 

This program is a straightforward implementation of the flow-graph


of Fig. 9.20 of the text. The program is very elegant but not as


efficient as it could be. Greater efficiency can be obtained at


the cost of a more complex program.


A significant increase in efficiency is suggested by noting that in


the last stage of the flow graph in Fig. 6.18, the complex multipliers


are all unity. Thus if the last stage is implemented separately, we


can eliminate N/2 complex multiplications


(a) What is the percentage reduction in multiplications that results?


(b) Modify the program to implement this saving in multiplications.


(c) Many small computers have FORTRAN compilers without the capa­


bility of complex arithmetic. Modify the given program so that only


real operations are involved. That is, using the present subroutine


as a guide, write a subroutine


FFT(XR,XIM)


where XR and XI are real arrays of dimension N which initially contain


the real part and the imaginary part of the input and finally the


real and imaginary parts of the transform.
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SOME CONCLUDING REMARKS


With lesson 20 we conclude this introductory set of lessons on digital


signal processing. It has often been said that the purpose of a


course is to uncover rather than to cover a subject and that


description applies particularly in this case. Throughout the


lectures I have tried to concentrate on the basic fundamentals of 

digital signal processing to provide a firm background for proceeding


to applications and advanced topics. As you know, we have only


covered the first six chapters in the text and omitted the more


advanced topics from some of those. I would like to encourage you


to take the time to look over the parts of those six chapters which


were not assigned reading. I would also like to encourage you to


continue on through the text; in chapters 10 and 11, in particular,


you will find frequent reference to applications.


With the first six chapters as background, I feel that you will find


much of the technical literature in the field of digital signal


processing to be interesting and understandable. As I mentioned in

the introductory lecture, this material has important applications


in a wide variety of areas, and I would like to encourage you to


explore some of these applications and also consider whether some


of the techniques that we have discussed have application to your


own area of interest. While we have only been able to present


the fundamentals, I hope that this set of lectures will serve to


open the door for you to an exciting, dynamic,.and important field.
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