
CHAPTER III 

LINEAR SYSTEM RESPONSE
 

3.1 OBJECTIVES 

The output produced by an operational amplifier (or any other dynamic 
system) in response to a particular type or class of inputs normally pro­
vides the most important characterization of the system. The purpose of 
this chapter is to develop the analytic tools necessary to determine the re­
sponse of a system to a specified input. 

While it is always possible to determine the response of a linear system 
to a given input exactly, we shall frequently find that greater insight into 
the design process results when a system response is approximated by the 
known response of a simpler configuration. For example, when designing 
a low-level preamplifier intended for audio signals, we might be interested 
in keeping the frequency response of the amplifier within i 5% of its mid-
band value over a particular bandwidth. If it is possible to approximate the 
amplifier as a two- or three-pole system, the necessary constraints on pole 
location are relatively straightforward. Similarly, if an oscilloscope vertical 
amplifier is to be designed, a required specification might be that the over­
shoot of the amplifier output in response to a step input be less than 3 % 
of its final value. Again, simple constraints result if the system transfer 
function can be approximated by three or fewer poles. 

The advantages of approximating the transfer functions of linear systems 
can only be appreciated with the aid of examples. The LM301A integrated-
circuit operational amplifier' has 13 transistors included-in its signal-trans­
mission path. Since each transistor can be modeled as having two capaci­
tors, the transfer function of the amplifier must include 26 poles. Even this 
estimate is optimistic, since there is distributed capacitance, comparable to 
transistor capacitances, associated with all of the other components in the 
signal path. 

Fortunately, experimental measurements of performance can save us 
from the conclusion that this amplifier is analytically intractable. Figure 
3.la shows the LM301A connected as a unity-gain inverter. Figures 3.1b 
and 3.lc show the output of this amplifier with the input a -50-mV step 

1This amplifier is described in Section 10.4.1. 
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Figure 3.1 Step responses of inverting amplifier. (a) Connection. (b) Step response 

with 220-pF compensating capacitor. (c) Step response with 12-pF compensating 

capacitor. 

for two different values of compensating capacitor.2 The responses of an 

R-C network and an R-L-C network when excited with +50-mV steps 

supplied from the same generator used to obtain the previous transients 

are shown in Figs. 3.2a and 3.2b, respectively. The network transfer func­

tions are 
V0(s) 1 
Vi(s) 2.5 X 10- 6 s + I 
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20 mV 

(c) 0.5 yAs 

Figure 3.1-Continued 

for the response shown in Fig. 3.2a and 

V0(s) 1 1 
2Vi(s) 2.5 X 104 s + 7 X 10- 8s + I 

for that shown in Fig. 3.2b. We conclude that there are many applications 
where the first- and second-order transfer functions of Eqns. 3.1 and 3.2 
adequately model the closed-loop transfer function of the LM301A when 
connected and compensated as shown in Fig. 3.1. 

This same type of modeling process can also be used to approximate the 
open-loop transfer function of the operational amplifier itself. Assume that 
the input impedance of the LM301A is large compared to 4.7 ki and that 
its output impedance is small compared to this value at frequencies of 
interest. The closed-loop transfer function for the connection shown in 
Fig. 3.1 is then 

V0(s) -a(s) 
Vi(s) 2 + a(s) 

2 Compensation is a process by which the response of a system can be modified advan­
tageously, and is described in detail in subsequent sections. 



20 mV 

T 

(a) 2 S 

20 mV 

(b) 0.5 /s 

Figure 3.2 Step responses for first- and second-order networks. (a) Step response 
for V.(s)/Vi(s) = ]/(2.5 X 10- 6s + 1). (b) Step response for V(s)/Vi(s) = 

S2 81/(2.5 X 10 14 + 7 X 10 s + 1). 
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where a(s) is the unloaded open-loop transfer function of the amplifier. 
Substituting approximate values for closed-loop gain (the negatives of 
Eqns. 3.1 and 3.2) into Eqn. 3.3 and solving for a(s) yields 

a~) 8 X 105 
a(s) 8X(3.4) 

and 

2.8 X 107 
a(s) 2. 0 (3.5)s(3.5 X 10- 7 s + 1) 

as approximate open-loop gains for the amplifier when compensated with 
220-pF and 12-pF capacitors, respectively. We shall see that these approxi­
mate values are quite accurate at frequencies where the magnitude of the 
loop transmission is near unity. 

3.2 LAPLACE TRANSFORMS3 

Laplace Transforms offer a method for solving any linear, time-invariant 
differential equation, and thus can be used to evaluate the response of a 
linear system to an arbitrary input. Since it is assumed that most readers 
have had some contact with this subject, and since we do not intend to 
use this method as our primary analytic tool, the exposure presented here 
is brief and directed mainly toward introducing notation and definitions 
that will be used later. 

3.2.1 Definitions and Properties 

The Laplace transform of a time functionf(t) is defined as 

2[f(t)] A F(s) A f f(t)e-" dt (3.6) 

where s is a complex variable o + jw. The inverse Laplace transform of the 
complex function F(s) is 

-1[F(s)]A f(t) A F(s)e" ds (3.7)
2.rj ,1-J Fs d 

A complete discussion is presented in M. F. Gardner and J. L. Barnes, Transientsin 
LinearSystems, Wiley, New York, 1942. 

In this section we temporarily suspend the variable and subscript notation used else­
where and conform to tradition by using a lower-case variable to signify a time function 
and the corresponding capital for its transform. 
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The direct-inverse transform pair is unique4 so that 

2-12[ftt)] =f (t (3.8) 

iff(t) = 0, t < 0, and if f f(t) | e- dt is finite for some real value of a1. 

A number of theorems useful for the analysis of dynamic systems can 
be developed from the definitions of the direct and inverse transforms for 
functions that satisfy the conditions of Eqn. 3.8. The more important of 
these theorems include the following. 

1. Linearity
 
2[af(t) + bg(t)] = [aF(s) + bG(s)]
 

where a and b are constants. 

2. Differentiation 

Ldf(t) sF(s) - lim f(t)
dt =-.0+ 

(The limit is taken by approaching t = 0 from positive t.) 

3. 	Integration
 

2 [ f(T) d-] F(s)
 

4. Convolution 

2 [f tf(r)g(t - r) d] = [ ff(t - r)g(r) dr] = F(s)G(s) 

5. 	Time shift
 
2[f(t - r)] = F(s)e-"
 

if f(t - r) = 0 for (t 	 - r) < 0, where r is a positive constant. 

6. Time scale 

1 Fs]
2[f(at)] = F -­

a a 

where a is a positive constant. 

7. Initialvalue 
lim f(t) lim sF(s) 
t-0+ 8-.co 

4 There are three additional constraints called the Direchlet conditions that are satisfied 

for all signals of physical origin. The interested reader is referred to Gardner and Barnes. 
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8. Final value 

limf (t) = lim sF(s) 
J-oo 8-0 

Theorem 4 is particularly valuable for the analysis of linear systems,
since it shows that the Laplace transform of a system output is the prod­
uct of the transform of the input signal and the transform of the impulse 
response of the system. 

3.2.2 Transforms of Common Functions 

The defining integrals can always be used to convert from a time func­
tion to its transform or vice versa. In practice, tabulated values are fre­
quently used for convenience, and many mathematical or engineering ref­
erencesI contain extensive lists of time functions and corresponding Laplace 
transforms. A short list of Laplace transforms is presented in Table 3.1. 

The time functions corresponding to ratios of polynomials in s that are 
not listed in the table can be evaluated by means of a partialfraction ex­
pansion. The function of interest is written in the form 

F(s) = p(s) _ p(s)
q(s) (s + s1 )(s + s2) . . . (s + s.) 

It is assumed that the order of the numerator polynomial is less than that 
of the denominator. If all of the roots of the denominator polynomial are 
first order (i.e., s, / si, i # j), 

F(s) = (3.10) 
k=1 S + sk 

where 

Ak = lim [(s + sk)F(s)] (3.11) 
k 

If one or more roots of the denominator polynomial are multiple roots, 
they contribute terms of the form 

"ZBkk- BsI~k 
+ (3.12)

k1(S Si) k 

See, for example, A. Erdeyli (Editor) Tables of Integral Transforms, Vol. 1, Bateman 
Manuscript Project, McGraw-Hill, New York, 1954 and R. E. Boly and G. L. Tuve, 
(Editors), Handbook of Tables for Applied Engineering Science, The Chemical Rubber 
Company, Cleveland, 1970. 
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Table 3.1 Laplace Transform Pairs
 

f(t), t > 0
F(s) 

[f(t) = 0, t < 0] 

1	 Unit impulse uo(t) 

1	 Unit step u-1 (t) 

S2	 [f(t) = 1, t > 0] 

1	 Unit ramp u- 2(t)
 

[f(t) = t, t > 0]
 

1	 tn 

s+1a	 n! 

e-at 
s + a1
 

1 tn
 
Se-at 

(s + a)"+1	 (n)! 

1 
1 - e-t/ 

s(rs + 1 

e-a sin wt
(s + a)2 + W2 

s + a e-a cos Wt 
(s + a)2 + W22 

1 on
 
2 e-t-wn(sin 1 - -2 t), < 1
 s2/, + 2 s/n + 1 1 - 2 

1 
1 - sin coV/1 - 2 t + tan-' 2,2s(s 2 /O,,2 + s/Wn + 1) 

where m is the order of the multiple root located at s = -si. The B's are 
determined from the relationship 

Bk = lim	 [(s + si)-F(s)]} (3.13)
k)! ds--k8 (m( ­
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Because of the linearity property of Laplace transforms, it is possible to 
find the time function f(t) by summing the contributions of all components 
of F(s). 

The properties of Laplace transforms listed earlier can often be used to 
determine the transform of time functions not listed in the table. The rec­
tangular pulse shown in Fig. 3.3 provides one example of this technique. 
The pulse (Fig. 3.3a) can be decomposed into two steps, one with an 
amplitude of +A starting at t = ti, summed with a second step of ampli­

tl t 
2 

t 3P, 

(a) 

f(t) 

A 

0 tl 

-A -------­

(b) 

Figure 3.3 Rectangular pulse. (a) Signal. (b) Signal decomposed in two steps. 
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sin wt, 0 < t < , 0 otherwise 

(a) 

f(t) 

sin wt, t > 0 sin w(t -), (t -)> 0 

01 

11 

(b) 

Figure 3.4 Sinusoidal pulse. (a) Signal. (b) Signal decomposed into two sinusoids. 

(c) First derivative of signal. (d) Second derivative of signal. 

tude - A starting at t = t 2 . Theorems 1 and 5 combined with the transform 
of a unit step from Table 3.1 show that the transform of a step with ampli­
tude A that starts at t = ti is (A/s)e-I,. Similarly, the transform of the 
second component is -(A/s)e- . Superposition insures that the transform 
of f(t) is the sum of these two functions, or 

F(s) = (e- t - e-s2) (3.14) 
S 

The sinusoidal pulse shown in Fig. 3.4 is used as a second example. 

One approach is to represent the single pulse as the sum of two sinusoids 
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f'(t) 

w cos wt, 0 < t < , 0 otherwise 

0 

(c)
 

ft 
f"1(t) 

Impulse of area o 

0 
t al. 

-W 2 sin cot, 0 < t < 1, 0 otherwise 

(d) 
Figure 3.4--Continued 

exactly as was done for the rectangular pulse. Table 3.1 shows that 
the transform of a unit-amplitude sinusoid starting at time t = 0 is 
w/(s2 ± w2). Summing transforms of the components shown in Fig. 3. 4b 
yields 

F(s) = 2 2 [I+e- ] (3.15) 
s2 + O 

An alternative approach involves differentiating f(t) twice. The derivative 
of f(t), f'(t), is shown in Fig. 3.4c. Since f(0) = 0, theorem 2 shows that 

2[f'(t)] = sF(s) (3.16) 



74 Linear System Response 

The second derivative of f(t) is shown in Fig. 3.4d. Application of theorem 
2 to this function 6 leads to 

2[f"(t)] = s2[f'(t)] - lim f'(t) = s 2F(s) - w (3.17) 
t- 0+ 

However, Fig. 3.4d indicates that 

f"(t) = -W 2f(t) + wuo t - -) (3.18) 

Thus 
= -C 2F(s) + we--(/w) (3.19) 

Combining Eqns. 3.17 and 3.19 yields 

s2F(s) - o = --C2F(s) + coe-('Iw) (3.20) 

Equation 3.20 is solved for F(s) with the result that 

F(s) = + [1 + e-(/w>] (3.21)
s 2 + W2 

Note that this development, in contrast to the one involving superposition, 
does not rely on knowledge of the transform of a sinusoid, and can even 
be used to determine this transform. 

3.2.3 Examples of the Use of Transforms 

Laplace transforms offer a convenient method for the solution of linear, 
time-invariant differential equations, since they replace the integration and 
differentiation required to solve these equations in the time domain by 
algebraic manipulation. As an example, consider the differential equation 

d2x dx 
+ 3 + 2x = e-I t > 0 (3.22)

dt 2 dt 

subject to the initial conditions 

dx 
x(0+) = 2 (0+) = 0 

dt 

The transform of both sides of Eqn. 3.22 is taken using theorem 2 (applied 
twice in the case of the second derivative) and Table 3.1 to determine the 
Laplace transform of e- . 

s2X(s) - sx(0+) -
dx 

(0+) + 3sX(s) - 3x(0+) + 2X(s) - (3.23)
dt s + 1 

6The portion of this expression involving lim t-0+could be eliminated if a second im­
pulse wuo(t) were included in f "(t). 
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5 
0 

(s) = 
(s + 1)(0.7 X 10-6S + 1) 

Figure 3.5 Unity-gain follower. 

Collecting terms and solving for X(s) yields 

2s2 + 8s + 7 
(s + 1)2(s + 2) 

Equations 3.10 and 3.12 show that since there is one first-order root and 
one second-order root, 

A1 B1 B2
X(S) = A + B, + B2(3.25)(s + 2) (s + 1) (s + 1)2 

The coefficients are evaluated with the aid of Eqns. 3.11 and 3.13, with 
the result that 

--1 3 1 
X(S) = + + (3.26)

s + 2 s + I (s + 1)2 

The inverse transform of X(s), evaluated with the aid of Table 3.1, is 

te tx(t) = -e-21 + 3e- + (3.27) 

The operational amplifier connected as a unity-gain noninverting ampli­
fier (Fig. 3.5) is used as a second example illustrating Laplace techniques. 
If we assume loading is negligible, 

VJ(s) a(s) 7 X 105 

Vi(s) I + a(s) (s + 1)(0.7 X 10- 6s + 1) + 7 X 101 

10-12s 2 + 1.4 X 10- 6 s + 1 (3.28) 

If the input signal is a unit step so that Vi(s) is 1/s, 

V 6(s) = 2 
I 

s(10-12s + 1.4 X 10-6s + 1) 

s[s2/(10 6)2 + 2(0.7)s/106 + 1] (3.29) 
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The final term in Eqn. 3.29 shows that the quadratic portion of the ex­
pression has a natural frequency w, = 106 and a damping ratio = 0.7. 
The corresponding time function is determined from Table 3.1, with the 
result 

)-07104t 

f(t) = 1 -
( 

sin (0.7 X 106 
t + 450) (3.30)

0.7 

3.3 TRANSIENT RESPONSE 

The transientresponse of an element or system is its output as a function 
of time following the application of a specified input. The test signal chosen 
to excite the transient response of the system may be either an input that 
is anticipated in normal operation, or it may be a mathematical abstrac­
tion selected because of the insight it lends to system behavior. Commonly 
used test signals include the impulse and time integrals of this function. 

3.3.1 Selection of Test Inputs 

The mathematics of linear systems insures that the same system infor­
mation is obtainable independent of the test input used, since the transfer 
function of a system is clearly independent of inputs applied to the system. 
In practice, however, we frequently find that certain aspects of system per­
formance are most easily evaluated by selecting the test input to accentuate 
features of interest. 

For example, we might attempt to evaluate the d-c gain of an operational 
amplifier with feedback by exciting it with an impulse and measuring the 
net area under the impulse response of the amplifier. This approach is 
mathematically sound, as shown by the following development. Assume 
that the closed-loop transfer function of the amplifier is G(s) and that the 
corresponding impulse response [the inverse transform of G(s)] is g(t). 
The properties of Laplace transforms show that 

f 0 g(t) dt = - G(s) (3.31)
S 

The final value theorem applied to this function indicates that the net area 
under impulse response is 

lim g(t) dt = lim s - G(s) = G(0) (3.32) 
t-.c o s-,0 

Unfortunately, this technique involves experimental pitfalls. The first of 
these is the choice of the time function used to approximate an impulse. 
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In order for a finite-duration pulse to approximate an impulse satisfactorily, 
it is necessary to have' 

t sm I (3.33) 

where t, is the width of the pulse and sm is the frequency of the pole of G(s) 
that is located furthest from the origin. 

It may be difficult to find a pulse generator that produces pulses narrow 
enough to test high-frequency amplifiers. Furthermore, the narrow pulse 
frequently leads to a small-amplitude output with attendant measurement 
problems. Even if a satisfactory impulse response is obtained, the tedious 
task of integrating this response (possibly by counting boxes under the 
output display on an oscilloscope) remains. It should be evident that a 
far more accurate and direct measurement of d-c gain is possible if a con­
stant input is applied to the amplifier. 

Alternatively, high-frequency components of the system response are not 
excited significantly if slowly time-varying inputs are applied as test inputs. 
In fact, systems may have high-frequency poles close to the imaginary axis 
in the s-plane, and thus border on instability; yet they exhibit well-behaved 
outputs when tested with slowly-varying inputs. 

For systems that have neither a zero-frequency pole nor a zero in their 
transfer function, the step response often provides the most meaningful 
evaluation of performance. The d-c gain can be obtained directly by 
measuring the final value of the response to a unit step, while the initial 
discontinuity characteristic of a step excites high-frequency poles in the 
system transfer function. Adequate approximations to an ideal step are 
provided by rectangular pulses with risetimes 

t, << s (3.34) 

(sm as defined earlier) and widths 

t >> - (3.35) 

where s, is the frequency of the pole in the transfer function located closest 
to the origin. Pulse generators with risetimes under I ns are available, and 
these generators can provide useful information about amplifiers with 
bandwidths on the order of 100 MHz. 

I While this statement is true in general, if only the d-c gain of the system is required, 
any pulse can be used. An extension of the above development shows that the area under 
the response to any unit-area input is identical to the area under the impulse response. 
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3.3.2 Approximating Transient Responses 

Examples in Section 3.1 indicated that in some cases it is possible to 
approximate the transient response of a complex system by using that of 
a much simpler system. This type of approximation is possible whenever 
the transfer function of interest is dominated by one or two poles. 

Consider an amplifier with a transfer function 

aom (rzis + 1) 
V =(s) n > m, all r > 0 (3.36)
Vt(s) T (rpjs + 1) 

j= 1 

The response of this system to a unit-step input is 

F1 V0(s) 1 
v0 t) = 2--1 -I- a. + $ Aket!Tpk (3.37) 

s V(s) k=1 

The A's obtained from Eqn. 3.11 after slight rearrangement are 

H -z +1
 

A - + ) (3.38)
 

T#k3*/c 

Assume thatTri >> all other r's. In this case, which corresponds to one pole 
in the system transfer function being much closer to the origin than all 
other singularities, Eqn. 3.38 can be used to show that A1 ~ ao and all 
other A's - 0 so that 

v,(t) ~ ao(l - e-/rPi) (3.39) 

This single-exponential transient response is shown in Fig. 3.6. Experience 
shows that the single-pole response is a good approximation to the actual 
response if remote singularities are a factor of five further from the origin 
than the dominant pole. 

The approximate result given above holds even if some of the remote 
singularities occur in complex conjugate pairs, providing that the pairs are 
located at much greater distances from the origin in the s plane than the 
dominant pole. However, if the real part of the complex pair is not more 
negative than the location of the dominant pole, small-amplitude, high-
frequency damped sinusoids may persist after the dominant transient is 
completed. 
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i i----_ 

(1 - 1) - 0.63 --- .. 

0 1 t 
,P1 

Figure 3.6 Step response of first-order system. 

Another common singularity pattern includes a complex pair of poles 
much closer to the origin in the s plane than all other poles and zeros. An 
argument similar to that given above shows that the transfer function of an 
amplifier with this type of singularity pattern can be approximated by the 
complex pair alone, and can be written in the standard form 

V0(s) a0V-(S)- a,(3.40)
Vs(s) s2/,W 2 + 2 s/w, + 1 

The equation parameters w,, and are called the naturalfrequency(expressed 
in radians per second) and the damping ratio, respectively. The physical 
significance of these parameters is indicated in the s-plane plot shown as 
Fig. 3.7. The relative pole locations shown in this diagram correspond to 
the underdamped case ( < 1). Two other possibilities are the critically 
damped pair ( = 1) where the two poles coincide on the real axis and the 
overdampedcase ( > 1) where the two poles are separated on the real axis. 
The denominator polynomial can be factored into two roots with real 
coefficients for the later two cases and, as a result, the form shown in Eqn. 
3.40 is normally not used. The output provided by the amplifier described 
by Eqn. 3.40 in response to a unit step is (from Table 3.1). 

vO(t) = ao 1 - 1 e'n t sin (.1 - 2 t + <p)] (3.41) 

where 

D= tan-'y'V.- 2] 
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Location of pole
 
pair n s plane
 

0 = cos-l9 

a = Re(s)-­

X 

Figure 3.7 s-plane plot of complex pole pair. 

Figure 3.8 is a plot of v0(t) as a function of normalized time wat for various 
values of damping ratio. Smaller damping ratios, corresponding to com­
plex pole pairs with the poles nearer the imaginary axis, are associated with 
step responses having a greater degree of overshoot. 

The transient responses of third- and higher-order systems are not as 

easily categorized as those of first- and second-order systems since more 
parameters are required to differentiate among the various possibilities. 
The situation is simplified if the relative pole positions fall into certain 
patterns. One class of transfer functions of interest are the Butterworth 
filters. These transfer functions are also called maximally flat because of 
properties of their frequency responses (see Section 3.4). The step responses 
of Butterworth filters also exhibit fairly low overshoot, and because of 

these properties feedback amplifiers are at times compensated so that their 
closed-loop poles form a Butterworth configuration. 

The poles of an nth-order Butterworth filter are located on a circle cen­

tered at the origin of the s-plane. For n even, the poles make angles [ 
(2k + 1) 90 0/n with the negative real axis, where k takes all possible in­
tegral values from 0 to (n/2) - 1. For n odd, one pole is located on the 

negative real axis, while others make angles of -k (180 0 /n) with the nega­

tive real axis where k takes integral values from 1 to (n/2) - (1/2). Thus, 

for example, a first-order Butterworth filter has a single pole located at 

s = - on. The second-order Butterworth filter has its poles located I45* 
from the negative real axis, corresponding to a damping ratio of 0.707. 
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Figure 3.8 Step responses of second-order system. 

The transfer functions for third- and fourth-order Butterworth filters are 

BAS) = s3/W,3 + 2s2/co 2 + 2s/w + 1 (3.42) 

and 

B4(s) = 	s4/w, 4 + 2.61s 3/w, 3 + 3.42s2/o 2 + 2.61s/w. + 1 (3.43) 

respectively. Plots of the pole locations of these functions are shown in 
Fig. 3.9. The transient outputs of these filters in response to unit steps are 
shown in Fig. 3.10. 

3.4 FREQUENCY RESPONSE 

The frequency response of an element or system is a measure of its 
steady-state performance under conditions of sinusoidal excitation. In 



I
 
'C(A 

s plane 

adius = co 

a : 

s plane 

.Radius = con 

a ~ 

(b) 

Figure 3.9 Pole locations for third- and fourth-order Butterworth filters. (a) Third-

Order. (b) Fourth-order. 
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order 

f 0.6 ­
v 0 (t) 

0.4 ­

0.2 

0 
0 2 4 6 8 10 12 14 16 

wnt a 

Figure 3.10 Step responses for third- and fourth-order Butterworth filters. 

steady state, the output of a linear element excited with a sinusoid at a 
frequency w (expressed in radians per second) is purely sinusoidal at fre­
quency w. The frequency response is expressed as a gain or magnitude 
M(w) that is the ratio of the amplitude of the output to the input sinusoid 
and a phase angle 4(co) that is the relative angle between the output and 
input sinusoids. The phase angle is positive if the output leads the input. 
The two components that comprise the frequency response of a system 
with a transfer function G(s) are given by 

M(co) = I G(jeo) (3.44a) 

$(w) = 4G(j) tan- Im[G(jw)] (3.44b)
Re[G(jo)] 

It is frequently necessary to determine the frequency response of a sys­
tem with a transfer function that is a ratio of polynomials in s. One pos­
sible method is to evaluate the frequency response by substituting jW for s 
at all frequencies of interest, but this method is cumbersome, particularly 
for high-order polynomials. An alternative approach is to present the in­
formation concerning the frequency response graphically, as described 
below. 

18 
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The transfer function is first factored so that both the numerator and 
denominator consist of products of first- and second-order terms with real 
coefficients. The function can then be written in the general form 

a, s2 2 is
G(s) (Ths + 1) 2 + s 

S' first- complex Wni Oni 
order zero 

Lzeros .J Lpairs 

X H 
2 

(3.45) 
first- (rjS + 1) complex (S

2
/ nk + 2kS/Wnk + 1)

order pole 
Lpoles . L-pairs 

While several methods such as Lin's method' are available for factoring 
polynomials, this operation can be tedious unless machine computation is 
employed, particularly when the order of the polynomial is large. Fortu­
nately, in many cases of interest the polynomials are either of low order 
or are available from the system equations in factored form. 

Since G(jo) is a function of a complex variable, its angle $(w) is the sum 
of the angles of the constituent terms. Similarly, its magnitude M(w) is the 
product of the magnitudes of the components. Furthermore, if the magni­
tudes of the components are plotted on a logarithmic scale, the log of M 
is given by the sum of the logs corresponding to the individual com­
ponents.I 

Plotting is simplified by recognizing that only four types of terms are 
possible in the representation of Eqn. 3.45: 

1. Constants, ao. 
2. Single- or multiple-order differentiations or integrations, sn, where n 

can be positive (differentiations) or negative (integrations). 
3. First-order terms (TS + 1), or its reciprocal. 

2 2 24. Complex conjugate pairs s , + s/wn + 1, or its reciprocal. 

8 S. N. Lin, "A Method of Successive Approximations of Evaluating the Real and Com­

plex Roots of Cubic and Higher-Order Equations," J. Math. Phys., Vol. 20, No. 3, August, 
1941, pp. 231-242. 

9The decibel, equal to 20 logio [magnitude] is often used for these manipulations. This 

usage is technically correct only if voltage gains or current gains between portions of a 
circuit with identical impedance levels are considered. The issue is further confused when 
the decibel is used indiscriminately to express dimensioned quantities such as transcon­
ductances. We shall normally reserve this type of presentation for loop-transmission 
manipulations (the loop transmission of any feedback system must be dimensionless), and 
simply plot signal ratios on logarithmic coordinates. 
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It is particularly convenient to represent each of these possible terms as 
a plot of M (on a logarithmic magnitude scale) and $ (expressed in degrees) 
as a function of o (expressed in radians per second) plotted on a logarith­
mic frequency axis. A logarithmic frequency axis is used because it provides 
adequate resolution in cases where the frequency range of interest is wide 
and because the relative shape of a particular response curve on the log 
axis does not change as it is frequency scaled. The magnitude and angle of 
any rational function can then be determined by adding the magnitudes 
and angles of its components. This representation of the frequency response 
of a system or element is called a Bode plot. 

The magnitude of a term ao is simply a frequency-independent constant, 
with an angle equal to 00 or 1800 depending on whether the sign of ao is 
positive or negative, respectively. 

Both differentiations and integrations are possible in feedback systems. 
For example, a first-order high-pass filter has a single zero at the origin 
and, thus, its voltage transfer ratio includes a factor s. A motor (frequently 
used in mechanical feedback systems) includes a factor 1/s in the transfer 
function that relates mechanical shaft angle to applied motor voltage, since 
a constant input voltage causes unlimited shaft rotation. Similarly, various 
types of phase detectors are examples of purely electronic elements that 
have a pole at the origin in their transfer functions. This pole results be­
cause the voltage out of such a circuit is proportional to the phase-angle 
difference between two input signals, and this angle is equal to the integral 
of the frequency difference between the two signals. We shall also see that 
it is often convenient to approximate the transfer function of an amplifier 
with high d-c gain and a single low-frequency pole as an integration. 

The magnitude of a term s- is equal to w-, a function that passes through 
1 at w = I and has a slope of n on logarithmic coordinates. The angle of 
this function is n X 900 at all frequencies. 

The magnitude of a first order pole 1/(rs + 1) is 

M = 1 (3.46) 

while the angle of this function is 

$ = -tan-rw (3.47) 

The magnitude and angle for the first-order pole are plotted as a function 
of normalized frequency in Fig. 3.11. An essential feature of the magnitude 
function is that it can be approximated by two straight lines, one lying 
along the M = 1 line and the other with a slope of - 1, which intersect at 
c = 1/r. (This frequency is called the cornerfrequency.) The maximum 
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Figure 3.11 Frequency response of first-order system. 

departure of the actual curves from the asymptotic representation is a 
factor of 0.707 and occurs at the corner frequency. The magnitude and 
angle for a first-order zero are obtained by inverting the curves shown for 
the pole, so that the magnitude approaches an asymptotic slope of +1 
beyond the corner frequency, while the angle changes from 0 to + 900. 

The magnitude for a complex-conjugate pole pair 

I
 
s2/Wn2 + 2 s/wn + 1
 

is 

4 22 ( 2 )2 (3.48) 

on2 n 

with the corresponding angle 

= -tan-' (3.49)
1 - W2/Wn2 

These functions are shown in Bode-plot form as a parametric family of 

curves plotted against normalized frequency w/n in Fig. 3.12. Note that 



10 
-0.05 

V'1 0 Asymptotic approximation 0.15 

0.1 -. 

0.01­

0.1 1 10 

w 

(a) 

01 ......................... 

S0.05 

-30 
0.1=00 

0.4 y 0.15 

0.2 
-60' 0.5-.- -­

-- -- 0.25 
0.6 

0.3 
0.707 

-90* 0.8 

-120­

-150­

_180' ----- - ­
0.1 1 13 

Wn 

(b) 
Figure 3.12 Frequency response of second-order system. (a) Magnitude. (b) Angle. 
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the asymptotic approximation to the magnitude is reasonably accurate 
providing that the damping ratio exceeds 0.25. The corresponding curves 
for a complex-conjugate zero are obtained by inverting the curves shown 
in Fig. 3.12. 

It was stated in Section 3.3.2 that feedback amplifiers are occasionally 
adjusted to have Butterworth responses. The frequency responses for third-
and fourth-order Butterworth filters are shown in Bode-plot form in Fig. 
3.13. Note that there is no peaking in the frequency response of these 
maximally-flat transfer functions. We also see from Fig. 3.12 that the damp­
ing ratio of 0.707, corresponding to the two-pole Butterworth configuration, 
divides the second-order responses that peak from those which do not. The 
reader should recall that the flatness of the Butterworth response refers to 
its frequency response, and that the step responses of all Butterworth filters 
exhibit overshoot. 

The value associated with Bode plots stems in large part from the ease 
with which the plot for a complex system can be obtained. The overall 
system transfer function can be obtained by the following procedure. 
First, the magnitude and phase curves corresponding to all the terms in­
cluded in the transfer function of interest are plotted. When the first- and 
second-order curves (Figs. 3.11 and 3.12) are used, they are located along 
the frequency axis so that their corner frequencies correspond to those of 
the represented factors. Once these curves have been plotted, the magnitude 
of the complete transfer function at any frequency is obtained by adding 
the linear distances from unity magnitude of all components at the fre­
quency of interest. The same type of graphical addition can be used to ob­
tain the complete phase curve. Dividers, or similar aids, can be used to per­
form the graphical addition. 

In practice, the asymptotic magnitude curve is usually sketched by draw­
ing a series of intersecting straight lines with appropriate slope changes at 
intersections. Corrections to the asymptotic curve can be added in the 
vicinity of singularities if necessary. 

The information contained in a Bode plot can also be presented as a 
gain-phase plot, which is a more convenient representation for some op­
erations. Rectangular coordinates are used, with the ordinate representing 
the magnitude (on a logarithmic scale) and the abscissa representing the 
phase angle in degrees. Frequency expressed in radians per second is a 
parameter along the gain-phase curve. Gain-phase plots are frequently 
drawn by transferring data from a Bode plot. 

The transfer function 

107(l0-4s + 1)
Giks) = s(0.Ols + 1) (s2/10" + 2(0.2)s/106 + 1) (3.50) 



1 

0.1 

10-2 _ 

10-3 ­

10-4 ­
0.1 0.3 1 0.3 10 

-90 ­

t 
# -180 ­

-270* ­

-360* ­
0.1 0.3 1 0.3 10 

Cb 

(b) 

Figure 3.13 Frequency response of third- and fourth-order Butterworth filters. 
(a) Magnitude. (b) Angle. 
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A 

(a) 

Figure 3.14 Bode plot of 10((a)12 6 Individual 
s(0.01s + 1)(s 2/10 + 2(0.2)s /10 + 1). ()Idvda 

factors. (b) Bode plot. 

is used to illustrate construction of Bode and gain-phase plots. This func­

tion includes these five factors: 

1. A constant 107. 
2. A single integration. 
3. A first-order pole with a time constant of 0.01 second, corresponding 

to a corner frequency of 100 radians per second. 
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Figure 3.14-Continued 

4. A first-order zero with a time constant of 10-4 seconds, corresponding 
to a corner frequency of 104 radians per second. 

5. A complex-conjugate pole pair with a natural frequency of 106
 
radians per second and a damping ratio of 0.2.
 

The individual factors are shown in Bode-plot form on a common fre­
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quency scale in Fig. 3.14a. These factors are combined to yield the Bode 
plot for the complete transfer function in Fig. 3.14b. The same information 
is presented in gain-phase form in Fig. 3.15. 

3.5 	 RELATIONSHIPS BETWEEN TRANSIENT RESPONSE
 
AND FREQUENCY RESPONSE
 

It is clear that either the impulse response (or the response to any other 
transient input) of a linear system or its frequency response completely 
characterize the system. In many cases experimental measurements on a 
closed-loop system are most easily made by applying a transient input. 
We may, however, be interested in certain aspects of the frequency response 
of the system such as its bandwidth defined as the frequency where its gain 
drops to 0.707 of the midfrequency value. 

Since either the transient response or the frequency response completely 
characterize the system, it should be possible to determine performance in 
one domain from measurements made in the other. Unfortunately, since 
the measured transient response does not provide an equation for this 
response, Laplace techniques cannot be used directly unless the time re­
sponse is first approximated analytically as a function of time. This section 
lists several approximate relationships between transient response and fre­
quency response that can be used to estimate one performance measure 
from the other. The approximations are based on the properties of first-
and second-order systems. 

It is assumed that the feedback path for the system under study is fre­
quency independent and has a magnitude of unity. A system with a fre­
quency-independent feedback path fo can be manipulated as shown in Fig. 
3.16 to yield a scaled, unity-feedback system. The approximations given 
are valid for the transfer function Va!/Vi, and V, can be determined by 
scaling values for V0 by 1/fo. 

It is also assumed that the magnitude of the d-c loop transmission is very 
large so that the closed-loop gain is nearly one at d-c. It is further assumed 
that the singularity closest to the origin in the s plane is either a pole or a 
complex pair of poles, and that the number of poles of the function exceeds 
the number of zeros. If these assumptions are satisfied, many practical 
systems have time domain-frequency domain relationships similar to those 
of first- or second-order systems. 

The parameters we shall use to describe the transient response and the 
frequency response of a system include the following. 

(a) Rise time t,. The time required for the step response to go from 10 
to 90 % of final value. 



108 

107 

106 

105 

tM 

104 

103 

102 -

10 -

1 

0.1 
-270* -18 0o -90* 

Figure 3.15 Gain phase plot of 
s(O.1s + 

107(10- 4 s + 1) 

1)(s 2 /101 2 + 2(0.2)s/10 + 1)' 

93 



94 Linear System Response 
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Figure 3.16 System topology for approximate relationships. (a) System with 
frequency-independent feedback path. (b) System represented in scaled, unity-
feedback form. 

(b) The maximum value of the step response P0 . 

(c) The time at which Po occurs t,. 
(d) Settling time t,. The time after which the system step response re­

mains within 2 % of final value. 

(e) The error coefficient ei. (See Section 3.6.) This coefficient is equal 

to the time delay between the output and the input when the system has 

reached steady-state conditions with a ramp as its input. 

(f) The bandwidth in radians per second wh or hertz fh (fh = Wch/ 2 r). 

The frequency at which the response of the system is 0.707 of its low-

frequency value. 

(g) The maximum magnitude of the frequency response M,. 

(h) The frequency at which M, occurs w,. 
These definitions are illustrated in Fig. 3.17. 
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For a first-order system with V(s)/Vi(s) = l/(rs + 1), the relationships 
are 

2.2 = 0.35 (3.51) 
t,.=2.2T (351 

Wh fh 

PO = M,= 1 (3.52) 

t, = oo (3.53) 

ta = 4r (3.54) 

ei = r (3.55) 

W, = 0 (3.56) 

For a second-order system with V,(s)/Vi(s) = 1/(s 2/,, 2 + 2 s/w, + 1) 

and 6 A cos-'r (see Fig. 3.7) the relationships are 

2.2 0.35 (357 
W h fh 

P0 = 1 + exp = 1 + e-sane (3.58)
V1 - ( 

t7 - (3.59) 
Wn #1-2 ~on sin6
 

4 4
 
t, ~ =(3.60)

o cos 

i= =2 cos (3.61) 
Wn (on 

1 _ 1 
M, - sI < 0.707, 6 > 45' (3.62)

2 1_2 sin 20 

, = co V1 - 2 2 = w, V-cos 26 < 0.707, 6 > 450 (3.63) 

Wh = fn(l-22 N2 -4 2+ 4 ) 12(3.64) 

If a system step response or frequency response is similar to that of an 

approximating system (see Figs. 3.6, 3.8, 3.11, and 3.12) measurements of 
tr, Po, and t, permit estimation of wh, w,, and M, or vice versa. The steady-

state error in response to a unit ramp can be estimated from either set of 

measurements. 
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Figure 3.17 Parameters used to describe transient and frequency responses. 
(a) Unit-step response. (b) Frequency response. (c) Ramp response. 
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One final comment concerning the quality of the relationship between 
0.707 bandwidth and 10 to 90% step risetime (Eqns. 3.51 and 3.57) is in 
order. For virtually any system that satisfies the original assumptions, in­
dependent of the order or relative stability of the system, the product trfh 

is within a few percent of 0.35. This relationship is so accurate that it really 
isn't worth measuringfh if the step response can be more easily determined. 

3.6 ERROR COEFFICIENTS 

The response of a linear system to certain types of transient inputs may 
be difficult or impossible to determine by Laplace techniques, either be­
cause the transform of the transient is cumbersome to evaluate or because 
the transient violates the conditions necessary for its transform to exist. 
For example, consider the angle that a radar antenna makes with a fixed 
reference while tracking an aircraft, as shown in Fig. 3.18. The pointing 
angle determined from the geometry is 

= tan-' t (3.65) 

Line of flight 

Aircraft 
velocity = v 

Radar 
antenna ,0 

Length = I 

Figure 3.18 Radar antenna tracking an airplane. 
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assuming that 6 = 0 at t = 0. This function is not transformable using our 
form of the Laplace transform, since it is nonzero for negative time and 
since no amount of time shift makes it zero for negative time. The expansion 
introduced in this section provides a convenient method for evaluating 
the performance of systems excited by transient inputs, such as Eqn. 3.65, 
for which all derivatives exist at all times. 

3.6.1 The Error Series 

Consider a system, initially at rest and driven by a single input, with a 
transfer function G(s). Furthermore, assume that G(s) can be expanded in 
a power series in s, or that 

g2s
2G(s) = go + gis + + + (3.66) 

If the system is excited by an input vi(t), the output signal as a function of 
time is 

v,(t) = 2-1[G(s)Vj(s)] 
= 2'[goVi(s) + gisVi(s) + g2s

2 Vt(s) + +] (3.67) 

If Eqn. 3.66 is inverse transformed term by term, and the differentiation 
property of Laplace transforms is used to simplify the result, we see that8 

dvi~t)d 2 v1(t)~ 
v0(t) = gov(t) + g1 di + g 2 +---+ + (3.68)

dt dts 

The complete series yields the correct value for v,(t) in cases where the func­
tion v1(t) and all its derivatives exist at all times. 

In practice, the method is normally used to evaluate the error (or dif­
ference between ideal and actual output) that results for a specified input. 
If Eqn. 3.68 is rewritten using the error e(t) as the dependent parameter, 
the resultant series 

dvi(t) dsv__t) 

e(t) = eovi(t) + ei di + e2 + + (3.69)dt dt2 

is called an error series, and the e's on the right-hand side of this equation 
are called errorcoefficients. 

The error coefficients can be obtained by two equivalent expansion 
methods. A formal mathematical approach shows that 

1 dk ye(s) (3.70) 
k! dsk LV(s) _1=o 

8A mathematically satisfying development is given in G. C. Newton, Jr., L. A. Gould, 
and J. F. Kaiser, Analytical Design of LinearFeedback Controls, Wiley, New York, 1957, 
Appendix C. An expression that bounds the error when the series is truncated is also 
given in this reference. 
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where Ve(s)/ Vi(s) is the input-to-error transfer function for the system. 
Alternatively, synthetic division can be used to write the input-to-error 
transfer function as a series in ascending powers of s. The coefficient of 
the sk term in this series is ek. 

While the formal mathematics require that the complete series be used to 
determine the error, the series converges rapidly in cases of practical in­
terest where the error is small compared to the input signal. (Note that if 
the error is the same order of magnitude as the input signal in a unity-
feedback system, comparable results can be obtained by turning off the 
system.) Thus in reasonable applications, a few terms of the error series 

normally suffice. Furthermore, the requirement that all derivatives of the 

input signal exist can be usually relaxed if we are interested in errors at times 

separated from the times of discontinuities by at least the settling time of 
the system. (See Section 3.5 for a definition of settling time.) 

3.6.2 Examples 

Some important properties of feedback amplifiers can be illustrated by 
applying error-coefficient analysis methods to the inverting-amplifier con­
nection shown in Fig. 3.19a. A block diagram obtained by assuming neg­
ligible loading at the input and output of the amplifier is shown in Fig. 
3.19b. An error signal is generated in this diagram by comparing the actual 

output of the amplifier with the ideal value, - Vi. The input-to-error trans­
fer function from this block diagram is 

Ve(S) = - 1 
Vi(s) 1 + a(s)/2 

Operational amplifiers are frequently designed to have an approximately 
single-pole open-loop transfer function, implying 

a(s) _ ao (3.72) 
rs + 1 

The error coefficients assuming this value for a(s) are easily evaluated by 
means of synthetic division since 

Ve(S) - -2 - 2rs 

Vi(s) I + ao/2(rs + 1) ao + 2 + 2rs 

2 2r 2
 

ao+ 2 ao + 2( ao+ 2)
 

+ 4T2 (1 - s 2' + .+ (3.73)
(ao + 2)2 ao + 2) 



100 Linear System Response 

R 

R 

Vi Vo 

(a) 

Vi 

(b) 

Figure 3.19 Unity-gain inverter. (a) Connection. (b) Block diagram including 
error signal. 

If a0 , the amplifier d-c gain, is large, the error coefficients are 
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(-
2 )'"r 

n = n > 1 (3.74) 
aon 

The error coefficients are easily interpreted in terms of the loop transmis­
sion of the amplifier-feedback network combination in this example. The 
magnitude of the zero-order error coefficient is equal to the reciprocal of the 
d-c loop transmission. The first-order error-coefficient magnitude is equal 
to the reciprocal of the frequency (in radians per second) at which the loop 
transmission is unity, while the magnitude of each subsequent higher-order 
error coefficient is attenuated by a factor equal to this frequency. These 
results reinforce the conclusion that feedback-amplifier errors are reduced 
by large loop transmissions and unity-gain frequencies. 

If this amplifier is excited with a ramp vi(t) = Rt, the error after any 
start-up transient has died out is 

dvi(t) 2Rt 2Rr
ve(t) = eovi(t) + ei dt + - . - (3.75)

dt ao ao 

Because the maximum input-signal level is limited by linearity considera­
tions, (the voltage Rt must be less than the voltage at which the amplifier 
saturates) the second term in the error series frequently dominates, and in 
these cases the error is 

Ve(t) - 2R (3.76) 
ao 

implying the actual ramp response of the amplifier lags behind the ideal 
output by an amount equal to the slope of the ramp divided by the unity­
loop-transmission frequency. The ramp response of the amplifier, assuming 
that the error series is dominated by the ei term, is compared with the 
ramp response of a system using an infinite-gain amplifier in Fig. 3.20. 
The steady-state ramp error, introduced earlier in Eqns. 3.55 and 3.61 and 
illustrated in Fig. 3.17c, is evident in this figure. 

One further observation lends insight into the operation of this type of 
system. If the relative magnitudes of the input signal and its derivatives are 
constrained so that the first-order (or higher) terms in the error series domi­
nate, the open-loop transfer function of the amplifier can be approximated 
as an integration. 

a(s) - - (3.77) 
TS 
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Figure 3.20 Ideal and actual ramp responses. 

In order for the output of an amplifier with this type of open-loop gain 
to be a ramp, it is necessary to have a constant error signal applied to the 
amplifier input. 

Pursuing this line of reasoning further shows how the open-loop transfer 
function of the amplifier should be chosen to reduce ramp error. Error is 
clearly reduced if the quantity ao/r is increased, but such an increase re­
quires a corresponding increase in the unity-loop-gain frequency. Unfor­
tunately oscillations result for sufficiently high unity-gain frequencies. Al­
ternatively, consider the result if the amplifier open-loop transfer function 
approximates a double integration 

a(s) ~ o( + (3.78) 

(The zero is necessary to insure stability. See Chapter 4.) The reader should 
verify that both eo and ei are zero for an amplifier with this open-loop 
transfer function, implying that the steady-state ramp error is zero. Further 
manipulation shows that if the amplifier open-loop transfer function in­
cludes an nth order integration, the error coefficients eo through e,_ 1 are 
zero. 
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Figure 3.21 Sample-and-hold circuit. 

The use of error coefficients to analyze systems excited by pulse signals 

is illustrated with the aid of the sample-and-hold circuit shown in Fig. 

3.21. This circuit consists of a buffer amplifier followed by a switch and 

capacitor. In practice the switch is frequently realized with a field-effect 
transistor, and the 100-9 resistor models the on resistance of the transistor. 
When the switch is closed, the capacitor is charged toward the voltage vr 

through the switch resistance. If the switch is opened at a time tA, the volt­

age vo(t) should ideally maintain the value VI(tA) for all time greater than 

tA. The buffer amplifier is included so that the capacitor charging current 
is supplied by the amplifier rather than the signal source. A second buffer 
amplifier is often included following the capacitor to isolate it from loads, 
but this second amplifier is not required for the present example. 

There are a variety of effects that degrade the performance of a sample-

and-hold circuit. One important source of error stems from the fact that 
vo(t) is generally not equal to v1(t) unless vr(t) is time invariant because of 

the dynamics of the buffer amplifier and the switch-capacitor combination. 
Thus an incorrect value is held when the switch is opened. 

Error coefficients can be used to predict the magnitude of this tracking 
error as a function of the input signal and the system dynamics. For 
purposes of illustration, it is assumed that the buffer amplifier has a single-
pole transfer function such that 

V(S) (3.79)
Vi(s) 10- 6 s + 1 

Since the time constant associated with the switch-capacitor combination 

is also 1 ys, the input-to-output transfer function with the switch closed 

(in which case the system is linear, time-invariant) is 

V0(s) __ 1 
Vt(S) = 1 ) (3.80)
Vi(s) (10-Is + 1)2 
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With the switch closed the output is ideally equal to the input, and thus 
the input-to-error transfer function is 

2Ve(S) V0(s) 10-1 s + 2 X 10-6s
 

Vi(s) Vi(s) (10-6s + 1)2 (3.81)
 

The first three error coefficients associated with Eqn. 3.81, obtained by 
means of synthetic division, are 

eo = 0 

ei = 2 X 10-1 sec 	 (3.82) 

e2 = -3 X 10-" sec 2 

Sample-and-hold circuits are frequently used to process pulses such as 
radar echos after these signals have passed through several amplifier stages. 
In many cases the pulse following amplification can be well approximated 
by a Gaussian signal, and for this reason a signal 

v(t) = e-( 
10 

100/
2

) 	 (3.83) 

is 	used as a test input. 
The first two derivatives of vi(t) are 

dv(t) = -1010te( I0 102 /2 ) (3.84)
dt 

and 

d2 v;(t)
0	 10 2 0 10 2d t - - e101 t /

2
) + 10202e-( 2/) (3.85)

dts 

The maximum magnitude of dvi/dt is 6.07 X 104 volts per second occurring 
at t = ± 10-1 seconds, and the maximum magnitude of d 2vi/dt2 is 1010 

volts per second squared at t = 0. If the first error coefficient is used to 
estimate error, we find that a tracking error of approximately 0.12 volt 
(12% of the peak-signal amplitude) is predicted if the switch is opened at 
t = : 10- seconds. The error series converges rapidly in this case, with 
its second term contributing a maximum error of 0.03 volt at t = 0. 

PROBLEMS 

P3.1 
An operational amplifier is connected to provide a noninverting gain of 

10. The small-signal step response of the connection is approximately first 
order with a 0 to 63 % risetime of 1 4s. Estimate the quantity a(s) for the 
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amplifier, assuming that loading at the amplifier input and output is in­
significant. 

P3.2 
The transfer function of a linear system is 

1 
A(s) = (s2 + 0.5s + 1)(0.s+ 1) 

Determine the step response of this system. Estimate (do not calculate ex­
actly) the percentage overshoot of this system in response to step excitation. 

P3.3 
Use the properties of Laplace transforms to evaluate the transform of 

the triangular pulse signal shown in Fig. 3.22. 

P3.4 
Use the properties of Laplace transforms to evaluate the transform of the 

pulse signal shown in Fig. 3.23. 

P3.5 
The response of a certain linear system is approximately second order, 

with a d-c gain of one. Measured performance shows that the peak value 
of the response to a unit step is 1.38 and that the time for the step response 
to first pass through one is 0.5 yis. Determine second-order parameters 
that can be used to model the system. Also estimate the peak value of the 
output that results when a unit impulse is applied to the input of the sys­
tem and the time required for the system impulse response to first return 
to zero. Estimate the quantities M, and fh for this system. 

P3.6 
A high-fidelity audio amplifier has a transfer function 

100s 
A (s) =)S(0.05s + 1)(s 2 /4 X 1010 + s/2ooX 100 + 1)(0.5 X 106 s + 1) 

1 - -- ­~*----
f(t) 

01 t t1I , 

Figure 3.22 Triangular pulse. 
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t
 
f(t) 

f(t) = 1 - cos t, 0 < t < 27r, 
0 otherwise 

o1 211 

t 

Figure 3.23 Raised cosine pulse. 

Plot this transfer function in both Bode and gain-phase form. Recognize 

that the high- and low-frequency singularities of this amplifier are widely 

spaced and use this fact to estimate the following quantities when the 

amplifier is excited with a 10-mV step. 

(a) The peak value of the output signal. 

(b) The time at which the peak value occurs. 

(c) The time required for the output to go from 2 to 18 V. 

(d) The time until the output droops to 7.4 V. 

P3.7 
An oscilloscope vertical amplifier can be modeled as having a transfer 

function equal to A o/(10-9s + 1)5. Estimate the 10 to 90% rise time of 

the output voltage when the amplifier is excited with a step-input signal. 

P3.8 
An asymptotic plot of the measured open-loop frequency response of 

an operational amplifier is shown in Fig. 3.24a. The amplifier is connected 

as shown in Fig. 3.24b. (You may neglect loading.) Show that lower values 

of a result in more heavily damped responses. Determine the value of a 

that results in the closed-loop step response of the amplifier having an 

overshoot of 20 % of final value. What is the 10 to 90 % rise time in response 

to a step for this value of a? 

P3.9 
A feedback system has a forward gain a(s) = K/s(rs + 1) and a feed­

back gain f = 1. Determine conditions on K and r so that eo and e2 are 
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Figure 3.24 Inverting amplifier. (a) Amplifier open-loop response. (b) Connection. 

both zero. What is the steady-state error in response to a unit ramp for 
this system? 

P3.10 
An operational amplifier connected as a unity-gain noninverting amplifier 

is excited with an input signal 

vi(t) = 5 tan- 1 105t 

Estimate the error between the actual and ideal outputs assuming that the 
open-loop transfer function can be approximated as indicated below. 
(Note that these transfer functions all have identical values for unity-gain 
frequency.) 

(a) a(s) = 107/s 
(b) a(s) = 10"'(10-6 s + 1)/s 2 

(c) a(s) = 101 (10- 6 s + 1)2 /s 3 
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bo + b,s +--+ bas"­

+ Ve 
VI 

Figure 3.25 System with feedforward path. 

P3.11 
The system shown in Fig. 3.25 uses a feedforward path to reduce errors. 

How should the b's be chosen to reduce error coefficients eo through e, to 
zero? Can you think of any practical disadvantages to this scheme? 
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