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Introduction to 
Systems with 

Dynamics 

Note: All references to Figures and Equations whose numbers are 
not preceded by an "S"refer to the textbook. 

From Figure 3.6 on page 79 of the textbook, a first-order system Solution 3.1 (P3.1) 
has a step response as shown in Figure S3. 1: 

Figure S3.1 First-order step
vO(t) response. 
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where AO is the d-c gain of the system. This time response is 
described by 

vo(t) = AO(1 - e-Ir) (S3.1) 

and the transfer function for this system is 

V A 
-" (s) = (S3.2)
V rs + l 

Here, we are given an operational amplifier connected for a non-
inverting gain of 10, as shown in Figure S3.2: 
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Figure S3.2 Gain-of-ten 
connection. 
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This corresponds to the block diagram of Figure S3.3: 

Figure S3.3 Block diagram for the 
gain-of-ten connection. 

Vi + VI 

This connection has a transfer function of 

V- (s) = a(s) 10 a(s) (S3.3)
V 1 + 0.1 X a(s) 10 + a(s) 

We are given that this system is first order with AO = 10, and r = 
10-6 sec. Thus, using Equation S3.2, we have 

10 a(s) 10 
(S3.4)10 + a(s) 10-6s + 1 

Solve this for a(s): 

10 + a(s)a(s) = (S3.5)10-6s + 1 
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Collect terms: 

a(s)(1 
10 6 s + 1) 

10 
10-6s + 1 

(S3.6) 

or 

10-6s 10 
(S3.7)

10--6S + 1I 10- 6s + 1 

which yields: 

10 
a(s) = (S3.8)

5 

That is, the op amp is modeled as a pole at the origin, which rep­
resents an integrator. 

First, let's examine the pole locations for this system. There is a 
complex pair at s, = -0.25 + j0.97 and s2 = -0.25 - j0.97. 
There is a real axis pole at s3 = -10. These poles are shown on 
the s plane in Figure S3.4. 
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Solution 3.2 (P3.2) 

Figure S3.4 Pole locations for 
Problem 3.2 (P3.2). 
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Solution 3.3 (P3.5) 

Following the discussion of Section 3.3.2 of the textbook, because 
the real axis pole is a factor of 10 farther from the origin than the 
complex pair, the system is well approximated by the complex pair 
alone. 

The complex pair has w, = 1, and f = 0.25. We consider the 
system to be approximated by the transfer function: 

A(s) ~2 (S3.9)s2 + 0.5s + I 

This has a step response given by Equation 3.41 of the textbook. 
That is: 

vo(t) = ao[1 - 'sin (z - Ont + ) 

where 

= tan- (S3.10) 

Here ao = 1, and <D = 1.32 radians. Thus, 

vo(t) = [1 - 1.03e-t4 sin (0.97t+ 1.32)] (S3.11) 

For this second-order system, we can estimate the peak overshoot 
by using Equation 3.58 of the textbook. That is, 

PO = 1 + e-/ t an * = 1.45 (S3.12) 

Thus, there is a 45% overshoot. 

A system that is second order, with a d-c gain of 1, has a transfer 
function of the form 

V 1 
4 (s) = 2 1 (S3.13)

Vi s +2 s+I 
-+ +1 

Wn con 

Given that PO = 1.38, we can use Equation 3.58 of the textbook to 
solve for . We have: 

Po = 1 + e-r/an 0 = 1.38 (S3.14) 
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Take the log of both sides 

In (0.38) = (S3.15)
tan 0 

or 

tan 0 1( = 3.25 (S3.16)
In (0.38) 

Thus, 0 = tan-'(3.25) = 1.27 radians. 

Now, recall that = cos 0. Thus, f = cos(1.27) = 0.29. Then 
we can use the graph of Figure 3.8 in the textbook to find o,. For ( 

0.3, the time required to pass through unity is defined by: 

Wt = 2 (S3.17) 

We are given that t = 0.5 X 10-6 sec. Thus 

_ 2 
n 0 2 10-6 4 X 106 rad/sec (S3.18)0.5 X 1 

The impulse response of this system may be found in Table 3.1 in 
the textbook. (We recall that the impulse response is the inverse 
transform of the transfer function for a system.) Thus, the impulse 
response, h(t), for the system described by Equation S3.13 is 

h(t) = "2 e -!' (sin w,\/1 - 2 t) (S3.19) 
\1 -­

Substituting in the values we have found for e and yields 

h(t) = 4.2 X 106 e- L16X10'(sin 3.8 X 106 t) (S3.20) 

This impulse response is sketched in Figure S3.5: 
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t2 

Figure S3.5 Impulse response for 
system of Problem 3.3 (P3.5). 
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The waveform is zero at t = 0, peaks at t = t,, and is zero again 
at t = t2 . First we solve for t2 . The waveform crosses zero at t = t2 
when the argument of the sine term in Equation S3.20 is equal to 
r. 	That is, 3.8 X 106t2 = r, which gives 

t2= 0.82 sec (S3.21) 

Because the system is lightly damped, the impulse response rings 
at a frequency of about w,, and thus the impulse response will peak 
approximately at the point where the argument of the sine term in 

Equation S3.20 is equal to . Thus, t, ~ = 0.41 usec. Substitut­
2 2 

ing into Equation S3.20 yields the peak value h(t,). That is, 

h(t1) = 4.2 X 106 e-(1-. 6
xI06)(

4.xIO-7) sin 
2 (S3.22) 

= 2.6 X 106 

We see that for a system with large o,,, the impulse response has a 
large peak amplitude. 

Using Equation 3.62 from the textbook, and the value of 0 
derived earlier, we find that 

1 _1 

MP 	 1.77 (S3.23) 
= sin 20 sin(2 X 1.27) 

Using Equation 3.64, we find: 

Wh W(l - 2{2 + 2 - 4 2 + 4.4) 12 (S3.24) 

Substituting in ( = 0.29 yields 

)h 	 = 4 X 106(1 - 0.17 + \2 - 0.34 + 0.03)/2 (S3.25) 
= 5.8 X 106 rad/sec 

Then, because o = 2rf, we have 

fh 	= = 9.2 X 105 Hz (S3.26)
2-7 
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First, we will find the frequency, Wh, at which the transfer function 
magnitude is 0.707 of its midband value. That is, let s = jWh. Then 
define Wh by 

|A 0 (S3.27)
(10-9x +0l)5 0.707 X A 

Taking the magnitude of the left-hand side gives 
-1/2 

= 0.707 (S3.28)
((l0-9,W)2 + 1)51 

Now, square both sides to find 

1 _ 1 
(S3.29)

((10-9h) 2 + 1)5 2 
Then solve for Wh by writing 

(10 ~Wh)2 + 1 = 2'/ (S3.30) 

or equivalently 

21/ - 1 
Wh = 0-9 3.86 X 108 rad/sec (S3.31) 

Then, using the approximations of Equation 3.51 of the textbook, 
we can solve for the rise time as 

2.2 2.2 
t,-- =- = 5.7 ns (S3.32)

Wh 3.86 X 10' 

This rise time is typical for moderate bandwidth (50 MHz) 
oscilloscopes. 

To solve this problem we need an expression for the closed-loop 
transfer function from V, to V,. Because the open-loop amplifier 
response is second order (single poles at w = 10 and w = 106), the 
closed-loop system will be second order, and we can use the results 
of Section 3.3 of the textbook to determine the closed-loop damp­
ing, peak overshoot, and rise time. 

Solution 3.4 (P3.7) 

Solution 3.5 (P3.8) 
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The output V is given by 

V = -a(s) V aRR + V aRIR (S3.33)
' aR||R + R aR|R + R) 

The equivalent block diagram for this expression is as shown in 
Figure S3.6. 

Figure S3.6 Block diagram 
representation of Equation S3.33. 

At this point, it is easier to manipulate the block diagram than to 
work through the algebra. An equivalent block diagram is given in 
Figure S3.7. 

Figure S3.7 Manipulated block 
diagram for Problem 3.5 (P3.8) 

aR||R
A few steps of algebra reduce the expression aR Rim­

aR||R + R 
pler form: 

aR2 

aR||R _ aR + R _ aR 

aR|jR + R aR2 ~ aR + R(a + 1) 
aR + R (S3.34) 

a 
2a + 1 
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Substituting this result back into the block diagram, and pushing 
the minus sign back through the summing junction gives the famil­
iar unity-feedback block diagram of Figure S3.8. 

Figure S3.8 Fully reduced block 
diagram for Problem 3.5 (P3.8). 

This has a closed-loop response given by 

a~)a
 
V a(s) 2a + 1
 

(S3.35) 
Vi 1+ a(s) 2a+1 

By inspection of the Bode plot of Figure 3.24a, we conclude that 
a(s) is given by 

106
a(s) = (S3.36)

(0.1s + 1)(106s + 1) 

Substituting this back into Equation S3.35 gives 

106 a 
x 2 a +V (0.1s + 1)(10-6s + 1) 1(s)

V, 106 a1+ x 2a +(0.ls + 1)(10-6s + 1) 1 (S3.37) 
-1 

10-6 (2 + - (0.1s + 1)(10-6s + 1) + 1 

Collecting terms gives: 

V" (s) -
-1I 

(S3.38) 

2 + - 10-13s2 + - 10-7s + 1
a)/ 
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The approximation sign is used because we have dropped a negli­
gibly small term in the coefficient ofs. Following the standard form 
for a second-order system from Equation 3.40 of the textbook we 
see that 

- = 2 + 1 10-13 (S3.40) 
Wn a) 

and 

- = 2 + 1 10-7 (S3.41) 
Wn a) 

Equation S3.40 gives 

- = /2 + 1/a X 10-65 (S3.42) 

Substituting this into Equation S3.41 yields 
(2 + 1/a) 10-7­

2 =(2 +/a10- = \/2 + 1/a X 10-0. (S3.43)
\2 + 1/a 10-6.5 

Thus, 

= \2 + 1/a X 0.158 (S3.44) 

We can see then that lower values of a result in larger values of , 
and consequently more heavily damped responses. 

Using Equation 3.58 from the textbook, we can solve for the 
value of s required for 20% overshoot in the step response. That is, 
we set P = 1.20, and solve for . 

P = 1.20 = 1 + exp 1 7 (S3.45) 

Thus, 

exp = 0.2 (S3.46) 

Take the log of both sides. 

_ 7r = In 0.2 (S3.47)
/1 - ( 

Square both sides. 

2 
2 = (ln 0.2)2 (S3.48) 

Then 

722 = (In 0.2)2(1 _ 2) (S3.49) 
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or 

2[ir2 + (In 0.2)2] = (In 0.2)2 (S3.50) 

Finally, choosing the solution for with > 0, we have: 

-In 0.2 = 0.46 (S3.51) 
2 + (In 0.2)2 

Then, we use Equation S3.44 to find the value of a that will give 
= 0.46. 

0.46 = \/2 + I/a X 0.158 (S3.52) 

or 

2 + 1/a = 8.33 (S3.53) 

which requires that 

a = 0.16 (S3.54) 

To find the rise time, we need on. From Equation S3.42, 

Wn = (2 + l/a)1/2106-5 (S3.55) 

Substituting in a = 0.16 gives 

on = 1.1 X 106 rad/sec (S3.56) 

Then, we use Equation 3.64 from the textbook to find Ch. 

- 2X2 + \2 - 4 2 + 4 4)/2Wh = on(1 

= 1.1 X 106(1 - 0.42 + 2 - 0.85 + 0.18)/2 (S3.57) 

= 1.45 X 106 rad/sec 

Then using the by-now familiar approximation from Equation 
3.57 of the textbook we find the rise time. 

2.2 _ 2.2 
t, - 1-45=2.16 = 1.52 ysec (S3.58)r Wh 1.45 X 106 

http:1-45=2.16
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