LECTURE 18: Inequalities, convergence, and the Weak Law of Large Numbers

e Inequalities

— bound P(X > a) based on limited information about a distribution
— Markov inequality (based on the mean)
— Chebyshev inequality (based on the mean and variance)

o WLLN: X, X1,..., Xy i.i.d.
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— application to polling

e Precise defn. of convergence

— convergence ‘“in probability”



The Markov inequality

e Use a bit of information about a distribution
to learn something about probabilities of "extreme events”

e "If X >0 and E[X] is small, then X is unlikely to be very large”

E[X]

Markov inequality: If X > 0 and a > 0, then P(X > a) <
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The Markov inequality

E|X
[ Markov inequality: If X > 0 and a > 0, then P(X > a) < [X] ]

a

{
e Example: X is Exponential(A=1): P(X >a) < E—
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The Chebyshev inequality
e Random variable X, with finite mean p and variance o2

e 'If the variance is small, then X is unlikely to be too far from the mean”
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Chebyshev inequality: P([X — | > ¢) 5

E|X
Markov inequality: If X > 0 and a > 0, then P(X > a) < L
a
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The Chebyshev inequality
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e Example: X is Exponential(A=1): P(X >a) < L (Markov)
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The Weak Law of Large Numbers (WLLN)

e X1,Xo,...0i.d.; finite mean x and variance o2
Sample mean: Mn:X1+m+X” ,4’-5[7{.‘]
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[WLLN: For e>0, P(|Mp—p|>e) = P(




Interpreting the WLLN Mp= X1+ -+ Xn)/n

mn
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[WLLN: For ¢ > 0, P(|M‘n—p,|26):P(‘ 1 h ”_,u‘ze)%o, asfn%ooJ

e One experiment

— many measurements X; = u + W;

— W;: measurement noise; E[W;] =0; independent W,

— sample mean M, is unlikely to be far off from true mean u

e Many independent repetitions of the same experiment

— event A, with p =P(A) - [7".“3: }?
— X;: indicator of event A y'-' ¥ i ) ‘S: A occunrs

o O o.wW.
— the sample mean M, is the empirical freq’uency of event A



The pollster’'s problem

e p:. fraction of population that will vote “yes” in a referendum

e ith (randomly selected) person polled: X; = {1* ?f yes, [ D’ff} o
Mh\'fﬂﬁmp)(J ;thFEquhég), 0, if no. PI’:-P)
o M,= (X144 Xy,)/n: fraction of “yes" in our sample ._/‘}
o
e Would like “small error,” e.g.: |Mp —p| < 0.01 e Tryn=10,000
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Convergence “in probability”

WLLN: For any € >0, P(|M, —pu|>¢) =0, asn— oo

e Would like to say that “M,, converges to p" m < 7IU

e Need to define the word "converges”

e Sequence of random variables Y,; not necessarily independent

Definition: A sequence Y, converges in probability to a numberg if:

for any € > 0, ?JL}mx_P(|}G1 —al 2 E) =0




Understanding convergence “in probability”

e Ordinary convergence

— Sequence an; number a
anp — a

“an eventually gets and stays

(arbitrarily) close to a”

€
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e For every € > 0, there exists nq,
such that for every n > ng,
we have |an —al <€

e Convergence in probability

— Sequence Y,,; number a

Yn—'r"a

e for any e >0, P(|Y}1—a|26)—%0
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“(almost all) of the PMF/PDF of Yy,
eventually gets concentrated
(arbitrarily) close to a

10



Some properties

e Suppose that X, — a, Yo — b, in probability

e If g is continuous, then g(X,) — g(a)

® Xn'I‘Yn“—}a"‘b

e But: E[X,] need not converge to a
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Convergence in probability examples
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e convergence in probability does not imply convergence of expectations
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Convergence in probability examples

I l
e X, i.i.d., uniform on [0,1]
3
!

® Yn=m|n{X1,,Xﬂ,}

P(va-0l2¢) = P (Y.2¢) .
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Related topics

e Better bounds/approximations on tail probabilities

— Markov and Chebyshev?equalities

-.'nﬁ(ﬂ)
— Chernoff bound _E ( ]M“']“)?a’) £ € ";;

— Central limit theorem % m.“_ - /\{ (V; 579/»1_ )”

e Different types of convergence

— Convergence in probability
— Convergence "“with probability 1" _[) (?w v ‘l’,,l (w)-—’ Y (w)%) :i
w

_ r:
Strong law of large numbers M . Pj H

M -Dep
— Convergence of a sequence of distributions (CDFs) to a limiting CDF
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