LECTURE 13: Conditional expectation and variance revisited;
Application: Sum of a random number of independent r.v.'s

- A more abstract version of the conditional expectation: $\mathbf{E}[X \mid Y]$
- view it as a random variable
- the law of iterated expectations
- A more abstract version of the conditional variance
- view it as a random variable
- the law of total variance
- Sum of a random number of independent r.v.'s
- mean
- variance

Conditional expectation as a random variable

- Function h
e.g., $h(x)=x^{2}$, for all x
- Random variable X; what is $h(X)$?
- $h(X)$ is the r.v. that takes the value x^{2}, if X happens to take the value x
- $g(y)=\mathbf{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$ (integral in continưous case)
- $g(Y)$: is the r.v. that takes the value $\mathrm{E}[X \mid Y=y]$, if Y happens to take the value y
- Remarks:
- It is a function of Y Definition: $\mathrm{E}[X \mid Y]=g(Y)$
- It is a random variable
- Has a distribution, mean, variance, etc.

The mean of $\mathrm{E}[X \mid Y]$: Law of iterated expectations

- $g(y)=\mathbf{E}[X \mid Y=y]$

$$
\mathbf{E}[\mathbf{E}[X \mid Y]]=\mathbf{E}[X]
$$

$\mathbf{E}[\mathbf{E}[X \mid Y]]$

Stick-breaking example

- Stick example: stick of length ℓ break at uniformly chosen point Y
break what is left at uniformly chosen point X

$\mathrm{E}[X \mid Y=y]=$
$\mathrm{E}[X \mid Y]=$ $f_{X \mid Y}(x \mid y) \downarrow{ }_{y}$
$\mathrm{E}[X]=$
- Suppose forecasts are made by calculating expected value, given any available information
- X : February sales
- Forecast in the beginning of the year:
- End of January: will get new information, value y of Y

Revised forecast:

- Law of iterated expectations:

The conditional variance as a random variable

$$
\begin{aligned}
& \operatorname{var}(X)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] \\
& \operatorname{var}(X \mid Y=y)=\mathrm{E}\left[(X-\mathrm{E}[X \mid Y=y])^{2} \mid Y=y\right]
\end{aligned}
$$

$\operatorname{var}(X \mid Y)$ is the r.v. that takes the value $\operatorname{var}(\bar{X} \mid Y=y)$, when $Y=y$

- Example: X uniform on $[0, Y]$

$$
\begin{array}{r}
\operatorname{var}(X \mid Y=y)= \\
\operatorname{var}(X \mid Y)=
\end{array}
$$

Law of total variance: $\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y])$

Derivation of the law of total variance

$\operatorname{var}(X)=E[\operatorname{var}(X \mid Y)]+\operatorname{var}(E[X \mid Y])$
$\operatorname{var}(X \mid Y=y)=$
$\operatorname{var}(X \mid Y)=$
$\mathrm{E}[\operatorname{var}(X \mid Y)]=$
$\operatorname{var}(\mathrm{E}[X \mid Y])=$

- $\operatorname{var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$

A simple example

$$
\operatorname{var}(X)=\mathrm{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y])
$$

$$
\operatorname{var}(X \mid Y)=\left\{\begin{array}{l}
\operatorname{var}(X \mid Y=1)= \\
\operatorname{var}(X \mid Y=2)=
\end{array}\right.
$$

$$
\mathrm{E}[\operatorname{var}(X \mid Y)]=
$$

$$
\mathrm{E}[X \mid Y]=\left\{\begin{array}{l}
\mathrm{E}[X \mid Y=1]= \\
\mathrm{E}[X \mid Y=2]=
\end{array}\right.
$$

$$
\begin{aligned}
\mathbf{E}[\mathbf{E}[X \mid Y]] & = \\
\operatorname{var}(\mathbf{E}[X \mid Y]) & =
\end{aligned}
$$

Section means and variances

- Two sections of a class: $\quad y=1$ (10 students); $y=2$ (20 students) x_{i} : score of student i
- Experiment: pick a student at random (uniformly) random variables: X and Y
- Data: $\quad y=1: \frac{1}{10} \sum_{i=1}^{10} x_{i}=90 \quad y=2: \frac{1}{20} \sum_{i=11}^{30} x_{i}=60$
$\mathrm{E}[X]=$
$\mathbf{E}[X \mid Y=1]=$
$\mathrm{E}[X \mid Y]=$
$\mathrm{E}[X \mid Y=2]=$ $\mathbf{E}[\mathbf{E}[X \mid Y]]=$

Section means and variances (ctd.)

$$
\mathrm{E}[X \mid Y]=\left\{\begin{array}{lll}
90, & \text { w.p. } 1 / 3 \\
60, & \text { w.p. } 2 / 3 & \mathrm{E}[\mathrm{E}[X \mid Y]]=70=\mathrm{E}[X] \\
& \operatorname{var}(\mathrm{E}[X \mid Y])=
\end{array}\right.
$$

- More data: $\quad \frac{1}{10} \sum_{i=1}^{10}\left(x_{i}-90\right)^{2}=10 \quad \frac{1}{20} \sum_{i=11}^{30}\left(x_{i}-60\right)^{2}=20$

$$
\begin{array}{ll}
\operatorname{var}(X \mid Y=1)= & \operatorname{var}(X \mid Y)= \\
\operatorname{var}(X \mid Y=2)= & \mathbf{E}[\operatorname{var}(X \mid Y)]= \\
\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathrm{E}[X \mid Y])
\end{array}
$$

$\operatorname{var}(X)=$ (average variability within sections) + (variability between sections)

Sum of a random number of independent r.v.'s

$$
\mathrm{E}[Y]=\mathrm{E}[N] \cdot \mathrm{E}[X]
$$

- N : number of stores visited (N is a nonnegative integer r.v.)
- Let $Y=X_{1}+\cdots+X_{N}$

$$
\mathbf{E}[Y \mid N=n]=
$$

- Total expectation theorem:

$$
\mathbf{E}[Y]=\sum_{n} p_{N}(n) \mathbf{E}[Y \mid N=n]
$$

- Law of iterated expectations:

$$
\mathbf{E}[Y]=\mathbf{E}[\mathrm{E}[Y \mid N]]
$$

Variance of sum of a random number of independent r.v.'s

$$
Y=X_{1}+\cdots+X_{N}
$$

$$
\operatorname{var}(Y)=\mathrm{E}[\operatorname{var}(Y \mid N)]+\operatorname{var}(\mathrm{E}[Y \mid N])
$$

$$
\operatorname{var}(Y)=\mathrm{E}[N] \operatorname{var}(X)+(\mathrm{E}[X])^{2} \operatorname{var}(N)
$$

- $\mathrm{E}[Y \mid N]=N \mathrm{E}[X]$

$$
\operatorname{var}(\mathrm{E}[Y \mid N])=
$$

- $\operatorname{var}(Y \mid N=n)=$

$$
\operatorname{var}(Y \mid N)=
$$

$$
\mathbf{E}[\operatorname{var}(Y \mid N)]=
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

