LECTURE 21: The Bernoulli process

- Definition of Bernoulli process
- Stochastic processes
- Basic properties (memorylessness)
- The time of the k th success/arrival
- Distribution of interarrival times
- Merging and splitting
- Poisson approximation

The Bernoulli process

- A sequence of independent Bernoulli trials, X_{i}
- At each trial, i :

$$
\begin{aligned}
& \mathbf{P}\left(X_{i}=1\right)=\mathbf{P}(\text { success at the } i \text { th trial })=p \\
& \mathbf{P}\left(X_{i}=0\right)=\mathbf{P}(\text { failure at the } i \text { th trial })=1-p
\end{aligned}
$$

- Key assumptions:
- Independence
- Time-homogeneity
- Model of:
- Jacob Bernoulli (1655-1705)
_ Sequence of lottery wins/losses
(Image is in the public domain. Source: Wikipedia)
_ Arrivals (each second) to a bank
Arrivals (at each time slot) to server
- ...

Stochastic processes
infinite

- First view: sequence of random variables X_{1}, X_{2}, \ldots

$$
\begin{cases}\text { Interested in: } \mathrm{E}\left[X_{i}\right]=p & \operatorname{var}\left(X_{i}\right)=p(1-p) \\ p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{x_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right) & p_{X_{i}}(x)=1-p x=1\end{cases}
$$

for all n

- Second view - sample space:
$\Omega=$ set of infinite sequences
of O 's a ad l's
- Example (for Bernoulli process):

$$
\begin{aligned}
\mathbf{P}\left(X_{i}=1 \text { for all } i\right) & =0 \quad(p<1) \\
& \leqslant P\left(x,=1, \ldots . x_{n}=1\right)=p^{n}, \text { for all n }
\end{aligned}
$$

Number of successes/arrivals S in n time slots

- $S=X_{1}+\cdots+X_{n}$
- $\mathbf{P}(S=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad k=0, \ldots, n^{2}$
- $\mathrm{E}[S]=n p$
- $\operatorname{var}(S)=n p(1-p)$

Time until the first success/arrival

- $T_{1}=\min \left\{i: X_{i}=1\right\}$
- $\mathbf{P}\left(T_{1}=k\right)=P(\underbrace{0 \cdots 0}_{k-1} 1)=(1-p)^{0-1} p$
- $\mathrm{E}\left[T_{1}\right]=\frac{1}{p}$
- $\operatorname{var}\left(T_{1}\right)=\frac{1-p}{p^{2}}$

Independence, memorylessness, and fresh-start properties

$Y_{1}=X_{6} X_{n+1}\left\{Y_{1}\right\}$
$Y_{2}=X_{7}^{X_{n+2}}\left\{\begin{array}{l}1,2, \ldots\end{array}\right.$
(1) $\{y$,$\} independent$ of $x_{1}, \ldots, x_{s_{m}}$
(2) $\operatorname{Ber}(p)$

- Fresh-start after time n

$$
\begin{aligned}
& Y_{1}=X_{T_{1}+1} \\
& Y_{2}=X_{T_{2}}+2
\end{aligned}
$$

(1) $\left\{y_{i}\right\}$ independent of $X_{1}, \ldots, x_{T_{1}}$
(2) $\operatorname{Ber}(p)$

- Fresh-start after time T_{1}

Independence, memorylessness, and fresh-start properties

- Fresh-start after a random time N ?

$$
N=\text { time of 3rd success }
$$

$N=$ first time that 3 successes in a row have been observed

The process X_{N+1}, X_{N+2}, \ldots is:

- a Bernoulli process
(as long as N is determined "causally")
- independent of N, X_{1}, \ldots, X_{N}

The distribution of busy periods

- At each slot, a server is busy or idle (Bernoulli process)
- First busy period: Geo (1-po)
- starts with first busy slot
- ends just before the first subsequent idle slot

Geo (1-p)

Time of the k th success/arrival

- $Y_{k}=$ time of k th arrival

$$
Y_{k}=T_{1}+\cdots+T_{k}
$$

- $T_{k}=k$ th inter-arrival time $=Y_{k}-Y_{k-1} \quad(k \geq 2)$
- The process starts fresh after time T_{1}
- T_{2} is independent of T_{1}; Geometric (p); etc.

Time of the k th success/arrival

$$
\begin{aligned}
& P\left(Y_{k}=t\right) \\
& =P\left(\begin{array}{c}
k-1 \text { arrivals in } \\
\text { time } t-1
\end{array}\right. \\
& \text { - P(arnival at time } t \text {) } \\
& =\binom{t-1}{k-1} p_{k-1} p^{k-1}(1-p)^{t-k} \cdot p \\
& Y_{k}=T_{1}+\cdots+T_{k} \\
& \text { the } T_{i} \text { are i.i.d., Geometric }(p) \\
& \mathbf{E}\left[Y_{k}\right]=\frac{k}{p} \quad \operatorname{var}\left(Y_{k}\right)=\frac{k(1-p)}{p^{2}} \\
& p_{Y_{k}}(t)=\binom{t-1}{k-1} p^{k}(1-p)^{t-k}, \\
& t=k, k+1, \ldots
\end{aligned}
$$

Merging of independent Bernoulli processes

Z_{t} merged process
Bernoulli $(p+q-p q)$

(collisions are counted as one arrival)

Splitting of a Bernoulli process

- Split successes into two streams, using independent flips of a coin with bias q
- assume that coin flips are independent from the original Bernoulli process

- Are the two resulting streams independent? N_{0}

Poisson approximation to binomial

- $n \rightarrow \infty$
- Interesting regime: large n, small p, moderate $\lambda=n p$
$p \rightarrow 0 \quad p=\frac{\lambda}{n}$
- Number of arrivals S in n slots: $\underline{\underline{p_{S}(k)}}=\frac{n!}{(n-k)!k!} \cdot p^{k}(1-p)^{n-k}, \quad k=0, \ldots, n$

$$
\left.\begin{array}{rl}
\text { For fixed } k=0,1, \ldots, \\
p_{S}(k) \rightarrow \frac{\lambda^{k}}{k!} e^{-\lambda},
\end{array} \quad=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!} \cdot \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}\right)
$$

- Fact: $\lim _{n \rightarrow \infty}(1-\lambda / n)^{n}=e^{-\lambda}$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

