LECTURE 1: Probability models and axioms

- Sample space
- Probability laws
 - Axioms
 - Properties that follow from the axioms
- Examples
 - Discrete
 - Continuous
- Discussion
 - Countable additivity
- Mathematical subtleties
- Interpretations of probabilities

Sample space

- Two steps:
 - Describe possible outcomes
 - Describe beliefs about likelihood of outcomes

Sample space

- List (set) of possible outcomes, Ω
- List must be:
- Mutually exclusive
- Collectively exhaustive
- At the "right" granularity

Sample space: discrete/finite example

• Two rolls of a tetrahedral die

sequential description

Sample space: continuous example

• (x,y) such that $0 \le x, y \le 1$

Probability axioms

- Event: a subset of the sample space
 - Probability is assigned to events

- Axioms:
 - Nonnegativity: $P(A) \ge 0$
 - Normalization: $P(\Omega) = 1$
 - (Finite) additivity: (to be strengthened later) If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

Some simple consequences of the axioms

Axioms	Consequences
$\mathbf{P}(A) \geq 0$	$\mathbf{P}(A) \leq 1$
$P(\Omega) = 1$	$\mathbf{P}(\emptyset) = 0$

For disjoint events: $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$ $\mathbf{P}(A) + \mathbf{P}(A^c) = 1$ $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C)$ and similarly for k disjoint events

 $P(\{s_1, s_2, \dots, s_k\}) = P(\{s_1\}) + \dots + P(\{s_k\})$

$= \mathbf{P}(s_1) + \cdots + \mathbf{P}(s_k)$

Some simple consequences of the axioms

Axioms

 $\mathbf{P}(A) \geq 0$

 $P(\Omega) = 1$

For disjoint events: $P(A \cup B) = P(A) + P(B)$

Some simple consequences of the axioms

• A, B, C disjoint: $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

• $P(\{s_1, s_2, ..., s_k\}) =$

More consequences of the axioms

• If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$

• $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$

• $\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$

More consequences of the axioms

• $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(A^c \cap B) + \mathbf{P}(A^c \cap B^c \cap C)$

Probability calculation: discrete/finite example

• Two rolls of a tetrahedral die • Let every possible outcome have probability 1/16

•
$$P(X = 1) =$$

Let $Z = \min(X, Y)$

•
$$P(Z = 4) =$$

•
$$P(Z = 2) =$$

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

 $\mathbf{P}(A) =$

Probability calculation: continuous example

• (x,y) such that $0 \le x, y \le 1$ • **Uniform** probability law: Probability = Area

Probability calculation steps

- Specify the sample space
- Specify a probability law
- Identify an event of interest
- Calculate...

Probability calculation: discrete but infinite sample space

P(outcome is even) =

Countable additivity axiom

Strengthens the finite additivity axiom

Countable Additivity Axiom:

If A_1 , A_2 , A_3 ,... is an infinite **sequence** of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

Countable Additivity Axiom:

If A_1 , A_2 , A_3 ,... is an infinite sequence of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

- Additivity holds only for "countable" sequences of events
- The unit square (similarly, the real line, etc.) is **not countable** • (its elements cannot be arranged in a sequence)
- "Area" is a legitimate probability law on the unit square, as long as we do not try to assign probabilities/areas to "very strange" sets

Interpretations of probability theory

- A narrow view: a branch of math
 - **"Thm:"** "Frequency" of event A "is" P(A)- Axioms \Rightarrow theorems

- Are probabilities frequencies?
 - P(coin toss yields heads) = 1/2
 - P(the president of ... will be reelected) = 0.7

- Probabilities are often intepreted as:
 - Description of beliefs
 - Betting preferences

The role of probability theory

- A framework for analyzing phenomena with uncertain outcomes
 - Rules for consistent reasoning
 - Used for predictions and decisions _

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.