LECTURE 9: Conditioning on an event; Multiple continuous r.v.'s

- Conditioning a r.v. on an event
 - Conditional PDF
 - Conditional expectation and the expected value rule
 - Exponential PDF: memorylessness
 - Total probability and expectation theorems
 - Mixed distributions
- Jointly continuous r.v.'s and joint PDFs
 - From the joints to the marginals
 - Uniform joint PDF example
 - The expected value rule and linearity of expectations
 - The joint CDF

Conditional PDF, given an event

$$p_X(x) = P(X = x)$$
 $f_X(x) \cdot \delta \approx P(x \le X \le x + \delta)$ $p_{X|A}(x) = P(X = x \mid A)$ $f_{X|A}(x) \cdot \delta \approx P(x \le X \le x + \delta \mid A)$

$$P(X \in B) = \sum_{x \in B} p_X(x)$$

$$P(X \in B) = \int_B f_X(x) dx$$

$$P(X \in B \mid A) = \sum_{x \in B} p_{X|A}(x)$$

$$P(X \in B \mid A) = \int_B f_{X|A}(x) dx$$

$$\sum_{x} p_{X|A}(x) = 1 \qquad \qquad \int f_{X|A}(x) dx = 1$$

Conditional PDF of X, given that $X \in A$

$$P(x \le X \le x + \delta \mid X \in A) \approx f_{X|X \in A}(x) \cdot \delta$$

$$f_{X|X\in A}(x) = egin{cases} 0, & ext{if } x
otin A \ f_{X(x)} \ \hline \mathbf{P}(A) \end{pmatrix}, & ext{if } x\in A \end{cases}$$

Conditional expectation of X, given an event

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

$$\mathbf{E}[X] = \int x f_X(x) \, dx$$

$$\mathbf{E}[X \mid A] = \sum_{x} x p_{X \mid A}(x)$$

$$\mathbf{E}[X \mid A] = \int x f_{X|A}(x) \, dx$$

Expected value rule:

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

$$\mathbf{E}[g(X)] = \int g(x) f_X(x) \, dx$$

$$\mathbf{E}[g(X) \mid A] = \sum_{x} g(x) p_{X|A}(x)$$

$$\mathbf{E}[g(X) \mid A] = \int g(x) f_{X|A}(x) dx$$

Example

$$A: \quad \frac{a+b}{2} \le X \le b$$

$$\mathbf{E}[X \mid A] =$$

$$f_{X|A}(x)$$
 a b c d x

$$E[X^2 | A] =$$

Memorylessness of the exponential PDF

- Do you prefer a used or a new "exponential" light bulb? Probabilistically identical!
- Bulb lifetime T: exponential(λ)

$$P(T>x)=e^{-\lambda x}$$
, for $x\geq 0$

- we are told that T > t
- r.v. X: remaining lifetime

$$P(X > x | T > t) = e^{-\lambda x}$$
, for $x \ge 0$

Memorylessness of the exponential PDF

$$f_T(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$

$$P(0 \le T \le \delta)$$

$$\mathbf{P}(t \le T \le t + \delta \mid T > t)$$

similar to an independent coin flip, every δ time steps, with $\mathbf{P}(\text{success}) \approx \lambda \delta$

Total probability and expectation theorems

$$\mathbf{P}(B) = \mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \cdots + \mathbf{P}(A_n)\mathbf{P}(B \mid A_n)$$

$$p_X(x) = P(A_1) p_{X|A_1}(x) + \cdots + P(A_n) p_{X|A_n}(x)$$

$$\frac{P(A_1)}{P(A_2)} \quad E[X \mid A_1]$$

$$\frac{P(A_2)}{P(A_3)} \quad E[X \mid A_2]$$

$$f_X(x) = P(A_1)f_{X|A_1}(x) + \cdots + P(A_n)f_{X|A_n}(x)$$

$$\mathbf{E}[X] = \mathbf{P}(A_1)\mathbf{E}[X \mid A_1] + \dots + \mathbf{P}(A_n)\mathbf{E}[X \mid A_n]$$

Example

 Bill goes to the supermarket shortly, with probability 1/3, at a time uniformly distributed between 0 and 2 hours from now; or with probability 2/3, later in the day at a time uniformly distributed between 6 and 8 hours from now

Mixed distributions

$$X = \begin{cases} \text{uniform on } [0,2], & \text{with probability } 1/2 \\ 1, & \text{with probability } 1/2 \end{cases}$$
 Is X discrete? Is X continuous?

$$Y$$
 discrete Z continuous

$$X = \begin{cases} Y, & \text{with probability } p \\ Z, & \text{with probability } 1 - p \end{cases}$$

X is mixed

$$F_X(x) =$$

$$E[X] =$$

Mixed distributions

$$X = \begin{cases} \text{uniform on } [0,2], & \text{with probability } 1/2\\ 1, & \text{with probability } 1/2 \end{cases}$$

Jointly continuous r.v.'s and joint PDFs

$$p_X(x)$$
 $f_X(x)$ $p_{X,Y}(x,y)$ $f_{X,Y}(x,y)$

$$p_{X,Y}(x,y) = \mathbf{P}(X = x \text{ and } Y = y) \ge 0$$

$$f_{X,Y}(x,y) \geq 0$$

$$\mathbf{P}((X,Y) \in B) = \sum_{(x,y) \in B} p_{X,Y}(x,y)$$

$$\mathbf{P}((X,Y) \in B) = \int \int f_{X,Y}(x,y) \, dx \, dy$$
$$(x,y) \in B$$

$$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$$

Definition: Two random variables are **jointly continuous** if they can be described by a joint PDF

Visualizing a joint PDF

$$P((X,Y) \in B) = \int \int f_{X,Y}(x,y) dx dy$$
$$(x,y) \in B$$

On joint PDFs

$$\mathbf{P}((X,Y) \in B) = \int \int f_{X,Y}(x,y) \, dx \, dy$$
$$(x,y) \in B$$

$$P(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy$$

$$P(a \le X \le a + \delta, c \le Y \le c + \delta) \approx f_{X,Y}(a,c) \cdot \delta^2$$

 $f_{X,Y}(x,y)$: probability per unit area

$$area(B) = 0 \Rightarrow P((X,Y) \in B) = 0$$

From the joint to the marginals

$$p_X(x) = \sum_y p_{X,Y}(x,y)$$

$$p_Y(y) = \sum_x p_{X,Y}(x,y)$$

$$f_X(x) = \int f_{X,Y}(x,y) \, dy$$

$$f_Y(y) = \int f_{X,Y}(x,y) dx$$

Uniform joint PDF on a set S

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\text{area of } S}, & \text{if } (x,y) \in S, \\ 0, & \text{otherwise.} \end{cases}$$

$$f_X(x) = \int f_{X,Y}(x,y) \, dy$$

$$f_Y(y) = \int f_{X,Y}(x,y) dx$$

More than two random variables

$$p_{X,Y,Z}(x,y,z)$$

$$f_{X,Y,Z}(x,y,z)$$

$$\sum_{x}\sum_{y}\sum_{z}p_{X,Y,Z}(x,y,z)=1$$

$$p_X(x) = \sum_{y} \sum_{z} p_{X,Y,Z}(x,y,z)$$

$$p_{X,Y}(x,y) = \sum_{z} p_{X,Y,Z}(x,y,z)$$

Functions of multiple random variables

$$Z = g(X, Y)$$

Expected value rule:

$$\mathbf{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

$$\mathbf{E}[g(X,Y)] = \int \int g(x,y) f_{X,Y}(x,y) \, dx \, dy$$

Linearity of expectations

$$\mathbf{E}[aX + b] = a\mathbf{E}[X] + b$$

$$E[X + Y] = E[X] + E[Y]$$

$$\mathbf{E}[X_1 + \dots + X_n] = \mathbf{E}[X_1] + \dots + \mathbf{E}[X_n]$$

The joint CDF

$$F_X(x) = \mathbf{P}(X \le x) = \int_{-\infty}^x f_X(t) dt$$

$$F_{X,Y}(x,y) = \mathbf{P}(X \le x, Y \le y)$$

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \, \partial y}(x,y)$$

$$f_X(x) = \frac{dF_X}{dx}(x)$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.