Markov processes — |l

* review of steady-state behavior /

* probability of blocked phone calls l/

* calculating absorption probabilities

* calculating expected time to absorption



review of steady state behavior

* Markov chain with a single class of recurrent
states, aperiodic; and some transient states; then,
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* can be found as the unique solution to the
balance equations
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on the use of steady state probabilities, example
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assume process starts in state 1
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design of a phone system
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* calls originate as a Poisson process, rate A
* each call duration is exponential (parameter )
* need to decide on how many lines, B?
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— P(a new call arrives) &~ A\d
— if you have i active calls, then P(a departure) = i)
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design of a phone system, a discrete time approximation
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approximation: discrete time slots of (small) duration ¢
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calculating absorption probabilities A

* absorbing state: recurrent state k with pp. = 1

b
* what is the probability @;)that the chain
eventually settles in ,g’ given it started in 2! 0.% dove.
1 =4, a; = l ,I/."@

_ 7 o @®

otherwise, a; = ,
0.= 848 (.'»\7_:.0.2- Qe+ O.8Q,
g = ’.OAQ & "‘:f"
G| = 0.6 Qg + 6.4 q.}
qs = 03 OL-I- O.Sa. +0M15
1 - - -bl.. - o
He g _;t m-j_:y :b‘:\{

6



expected time to absorption

* find expected number of transitions j¢;
until reaching 4, given that the initial state is ¢
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mean first passage and recurrence times

* chain with one recurrent class; fix a recurrent state s

* mean first passage time from i to s :

= E[min{n > 0 such that X, = s} | Xo = i]

— unique solution to:
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* mean recurrence time of s

— solution to:




gambler’s example

. a gambler starts with i dollars; each time, she bets $1 in a fair game, until she either has O or n dollars.
*  what is the probability a; that she ends up with having n dollars?
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*  expected wealthattheend? 0 (1 —a;)+n-a; = M x 0'44 -

*  how long does the gambler expect to stay in the game!
— u; = expected number of plays, starting from 1
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— in general
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