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Lectures 02 and 03: Simple Harmonic Oscillator, Classical Pendulum,
and General Oscillations 

In these notes, we introduce simple harmonic oscillator motions, its defining equation of motion, and the 
corresponding general solutions. We discuss how the equation of motion of the pendulum approximates 
the simple harmonic oscillator equation of motion in the small angle approximation. 

1 Simple Harmonic Oscillator 
Consider the three scenarios depicted below: 

(b) Pendulum 

(c) Ball in a bowl 
(a) Mass and Spring 

Figure 1: Three di�erent systems which exhibit simple harmonic motion. The velocity vector ~v is identified 
in each to define the direction of motion. 

In Fig. 1a we have a mass attached to a spring and moving back and forth horizontally. In Fig. 1b we 
have a heavy ball attached to a much less massive string and swinging about a pivot.In Fig. 1c we have a ball 
rolling around near the bottom of a hemispherical bowl. What do all of these phenomena have in common? 
Under ideal conditions1 they are all examples of simple harmonic motion which is characterized by having 
an acceleration which is proportional to but in the opposite direction of the position. For the first part of 
this course we will be attempting to model this motion under various conditions, so our framing question 
is 

Framing Question 
How can we use physical principles to understand and model simple harmonic motion? 

1.1 Kinematics Review: 
Before we discuss the simple harmonic oscillator, let us review some basic concepts in classical mechan-
ics. When attempting to describe the trajectory of a particle moving in multiple dimensions, we define the 

1Conditions where friction is negligible and the objects are near equilibrium (defined later). 
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particle’s position by a ~r(t), a function of time with units of distance. In three dimensions ~r(t) has three 
components and can be written as 

~r(t) = x(t) x̂ + y(t) ŷ + z(t) ẑ, (1) 

where x(t), y(t), and z(t) define motion in the x, y, and z direction respectively, and x̂, ŷ, and ẑ  are the unit 
vectors associated with the relevant direction. To determine the rate at which the position is changing with 
time, we compute the velocity ~v(t) which is defined as the derivative of the position: 

~r(t +Δt) − ~r(t) d 
~v(t) = lim = ~r(t) ≡ ~ṙ(t). (2)

Δt→0 Δt dt 

In the final equivalence in Eq.(2), we have introduced dot notation to simplify the form of the derivative 
operator. From now on, we will use a dot above a variable to signify the time derivative of that variable; 
correspondingly, nth-order time derivatives are identified by n dots. 

The limit in Eq.(2) implies that the velocity ~v(t) is the instantaneous rate of change of the position x(t). 
Similarly, to determine the rate at which the velocity is changing with time, we compute the acceleration 
which is defined as the derivative of the velocity: 

~v(t +Δt) − ~v(t) d 
~a(t) = lim = ~v(t) = ~v̇(t). (3)

Δt→0 Δt dt 

Because the acceleration is the derivative of the velocity and the velocity is the derivative of the position, the 
acceleration is the second derivative of the position: 

d d d2 
¨ ~a(t)(t) = ~x(t) = ~x(t) = ~x(t). (4)

dt dt dt2 

We could also write these relationships as integration formulas. For a function f(x) such that f(x) = 
dF (x)/dx, the Fundamental Theory of Calculus states Z b 

dx f(x) = F (b) − F (a), (5) 
a 

where b and a are points in the x domain. We note that in Eq.(5), x is a dummy integration variable and 
hence does not change the value of the integral on the left-hand side. We could, for example, replace x with 
another variable u or y and we would get the same result. Given, Eq.(5) we can rewrite Eq.(2), Eq.(3), and 
Eq.(4) as integration formulas. Doing so, we find, respectively, 

00Z Z Z Zt t t t 
00).~x(t) = ~x0 + dt0 ~v(t0), ~v(t) = ~v0 + dt0 ~a(t0), and ~x(t) = ~x0 + ~v0t + dt0 dt00 ~a(t (6) 

t0 t0 t0 t0 

We note that in Eq.(6) t0 and t00 serve as dummy variables which are used to parameterize the integration 
but which do not a�ect the result of the integration. To obtain the last equation in Eq.(6), we plugged the 
second equation into the first equation. 

The above formulas are relevant when we study Newtonian Mechanics for they allow us to characterize 
the various properties of motion in our system of study. In particular Newton’s 2nd Law states that the net 
force (i.e., the sum of all forces) F~ net acting on a particle of mass m is related to the acceleration of the particle 
through 

¨ ~ m~r(t) = Fnet. (7) 

Net force Fnet—like position, velocity, and acceleration—is a vector quantity meaning it has both magnitude 
and direction; for one-dimension this means both its absolute value and its sign are physically important. 

Eq.(7) defines the equation of motion of our mechanical system. The equation of motion of a system 
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is always given by a di�erential equation which defines how the position changes in time. When we solve 
the di�erential equation and find x(t) (or the value of whatever analogous kinematic variable defines our 
system) we can then completely characterize all kinematic aspects of the system. 

We will be spending much of this class solving equations of motion. To provide practice in this direction, 
we solve one you might have seen before. Say we have a particle of mass m falling in a gravitational field. 
The force exerted on the particle is 

~F = −mg y,̂ (8) 

where g is the gravitational acceleration constant and we have taken +ŷ to define the positive vertical direc-
tion. Taking ~r(t) = x(t) x̂ + y(t) ŷ to define the position of the particle and using Eq.(7), we find the equation 
of motion 

¨ ~ m~r(t) = F 

d2 
~ m (x(t) x̂ + y(t) ŷ) = F 

dt2 

m (ẍ(t) x̂ + ÿ(t) ŷ) = −mg ŷ  

mẍ(t) x̂ + mÿ(t) ŷ = −mg ŷ  (9) 

Because the directions x̂ and ŷ  are independent, we can separate Eq.(9) into two equations, one for each 
direction: 

d2 d2 

m x(t) = 0, m y(t) = −mg. (10)
dt2 dt2 

To solve these equations, we use the formulas given in Eq.(6). We are only interested in a single direction for 
each equation in Eq.(10), so we can neglect the vector notation in Eq.(6). Using these integration formulas, 
we find the solutions 

vx(t) = v0x, vy(t) = v0y − gt, (11) 
1 2 x(t) = x0 + v0xt, y(t) = y0 + v0yt − gt , (12)
2 

where v0x and v0y are the initial velocity in the x and y direction respectively. If we parameterize these initial 
velocities by the angle θ (i.e, the angle at which the mass m is launched into the air), then we can define the 
these velocities in terms of the speed v0 (defined as the magnitude of the velocity vector) and the angle θ: 

v0x = v0 cos θ, v0y = v0 sin θ. (13) 

Using Eq.(13) and Eq.(12), we can derive that the trajectory of the particle giving the vertical position y as a 
function of horizontal position x is 

g(x − x0)2 

y(x) = y0 + (x − x0) tan θ − . (14)22v0 cos
2 θ 

1.2 SHO equation of motion 
Having reviewed some basic results in kinematics and equations of motion, we are now ready to consider 
the titular motion of these notes. We will consider the first scenario in Fig. 1 redrawn in Fig. 2. We have a 
mass m attached to a spring which is itself attached to a wall. The mass, initially at rest and at the equilibrium 
position x(t) = xeq, is pulled to a position x(t) = x. For the simplest type of spring, if x − xeq is suÿciently 
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Figure 2: Mass-spring system. By Hooke’s law, the spring exerts a force on the mass which always points 
toward the equilibrium position and is proportional to the displacement from that position. 

small2, the force exerted by the spring on the mass is 

F = −k(x − xeq), (15) 

where k is a constant with units of N/m. Eq.(15) is Hooke’s law. It states that, for so-called Hookean springs, 
the force exerted by the spring on a mass is proportional to the mass’s displacement from the equilibrium 
position, and this force always points toward the equilibrium position. In order to precisely describe the 
motion determined by Eq.(15), we need to solve Newton’s 2nd law given this force. For simplicity we will 
take xeq = 0; its actual value depends on the setup of our system, but doesn’t change the resulting dynamics. 
For our one-dimensional system, in which the mass is only acted upon by the spring, Newton’s second law 
gives us 

mẍ(t) = Fnet = −kx(t), (16) 

where we explicitly wrote the time dependence of the position for clarity. Adding kx(t) to both sides of 
Eq.(16), and dividing both sides by m, we then have the equation 

ẍ(t) + 
k
x(t) = 0. (17) 

m 

We are almost at a general equation which can model the situations shown in Fig. 1, but before we get there 
we need to write Eq.(17) somewhat more abstractly. The constants k and m are specific to the spring-mass 
system, but what their ratio represents is not. Given the units of k and m separately, we find that the units 
of the quantity k/m are � � 

k N 1 kg · m 1 1 1 
= [k] × [m]−1 = × = × = . (18) 

m m kg s2 m kg s2 p
Given that k/m has units of 1/s2 and frequency has units of 1/s, we term k/m the angular frequency3 of 
our system, and define r 

ω0 ≡ 
k
, (19) 

m 

where ω0 (pronounced ”oh-meh-ga”) stands in for the angular frequency. Thus Eq.(17) becomes 

ẍ(t) + ω0
2 x(t) = 0. (20) 

2What we mean by suÿciently small depends on unstated parameters which define the spring force.p3We will later find that k/m has the units radians/sec, but radians are always taken to be dimensionless. 
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Eq.(20) is termed the simple harmonic oscillator (SHO) equation of motion. It is the most basic equation 
of the collection of equations involving mechanical oscillations. Moreover, the system Eq.(20) describes (i.e., 
a system of small oscillations about an equilibrium position) is ubiquitous throughout physics; it appears 
in classical mechanics, quantum mechanics, thermodynamics, and electrodynamics. 

1.3 Solving equation of motion 
Eq.(20) defines the dynamics of our system; it tells us how the position changes in time given the spring con-
stant k and mass m. Now, we want to determine the kinematics of the system, that is we want to know what 
the position is as a function of time. Thus, we need to solve Eq.(20), and we will know we have succeeded 
in doing so when we find the most general x(t) which satisfies Eq.(20). 

The standard method of solving equations of the form Eq.(20) is actually quite simple. Such equations 
are called homogeneous linear di�erential equations with constant coeÿcients. Here’s the name break 
down (along with examples of equations which are not homogeneous, are not linear, or do not constant-
coeÿcients) : 

– Homogeneous: refers to the fact that all terms in the di�erential equation include the function x(t). 
Inhomogeneous equation example: ẍ(t) + ω0

2x(t) = F0 cos(ωt). 
– Linear: refers to the fact that all terms have x(t) raised to the first power. 

Nonlinear equation: ẍ(t) + ω0
2x(t) − λx(t)2 = 0. 

– Constant Coeÿcients: refers to the fact that all coeÿcients in the di�erential equation are independent 
of t and x. 
Time-dependent coeÿcients example: ẍ(t) + ω0

2 sin(ωt)x(t) = 0. 

Homogeneous linear di�erential equations with constant coeÿcients always have solutions which are ex-
ponential functions because exponential functions have the unique property that they are their own deriva-
tive. Given this property of exponentials, the way we solve Eq.(20) is to guess a general exponential func-
tion with arbitrary parameters and then choose the parameters such that they satisfy the equation. Because 
Eq.(20) defines oscillatory motion that is equivalent to the simplest type of periodic motion, we expect that 
the x(t) that solves Eq.(20) should be composed of sine functions and cosine functions. We will find this is 
indeed the case. 

Our starting guess will be 
? 

x(t) = Aeαt [Guessed solution], (21) 

where A and α (pronounced ”al-fah”) are arbitrary constants that we may need to determine. Inserting, 
Eq.(21) into Eq.(20), we find 

0 = ẍ(t) + ω0
2 x(t) 

d2 � � 
= Aeαt + ω0

2Aeαt 
dt2 

= α2Aeαt + ω0
2Aeαt 

= (α2 + ω0
2)Aeαt . (22) 

Because eαt has the property that it can never be zero for finite t, we can divide out Aeαt in the final equality. 
Thus in order for Eq.(21) to solve the SHO equation of motion we need to solve 

α2 + ω0
2 = 0, (23) 

for α. Doing so, we find that α can take on two values: We can have α = +iω0, or α = −iω0, where i ≡ 
√
−1 

is the imaginary unit. Both options of α are valid, and both yield a Eq.(21) which solves Eq.(20). Therefore, 
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we have the two, purely exponential solutions 

iω0t −iω0t x(t) = A+e or x(t) = A−e . (24) 

where A+ and A− are two di�erent coeÿcients corresponding to the two di�erent possible values of α. We 
do not choose A+ and A− to be the same because eiω0t and e−iω0t are di�erent functions and can thus be 
seen as two di�erent guesses of the form Eq.(21). 

Both functions in Eq.(24) satisfy Eq.(20). What then is the most general solution? It turns out the most 
general form is a sum of the two solutions in Eq.(24), that is 

? iω0t −iω0t x(t) = A+e + A−e , (25) 

where A+ and A− are two undetermined and independent constants. We can check Eq.(25) by inserting it 
into Eq.(20) and ensuring it correctly satisfies the di�erential equation. 

But we include a question mark in Eq.(25) because we are not quite finished. The quantities eiω0t and 
e−iω0t are complex and therefore contain imaginary numbers, but x(t) is a real quantity which we can mea-
sure. Thus, the general solution Eq.(25) is not a physical solution until we take its real part. In order to do 
so, we need to review some facts about complex exponentials. 

1.4 Aside/Review: Complex exponentials 
In order to find the most general physical solution of Eq.(20), we need to take the real part of Eq.(25). Before 
we do so we need to establish an important identity. Let’s say we have the following di�erential equation 

d
f(θ) = if(θ), (26)

dθ 

with the condition f(θ = 0) = 1. What is the solution to this equation? Guessing a solution, we find that 

iθf1(θ) = e (27) 

0is a valid solution because f(0) = e = 1 and 

d
f1(θ) = ieiθ = if1(θ). (28)

dθ 

But another solution that works is 
f2(θ) = cos θ + i sin θ. (29) 

This solution also satisfies the condition f(θ = 0) = 1 and it also gives us 

d
f2(θ) = − sin θ + i cos θ = i(i sin θ + cos θ) = if2(θ). (30)

dθ 

Since both Eq.(27) and Eq.(29) are two solutions to the first-order equation Eq.(26) and both satisfy the con-
dition f(0) = 1, they must represent the same solution. Thus, we have the identity4 

iθ e = cos θ + i sin θ. (31) 

Eq.(31) is termed Euler’s (pronounced ”Oy-ler”s) formula. Eq.(31) is a fundamental result of complex 
algebra and is useful in proving many trigonometric identities. It is given much fanfare in mathematics 
literature, because when we plug θ = π into Eq.(31), we find Euler’s identity 

e iπ + 1 = 0. (32) 
4The other standard way to prove this identity is to use Taylor series. 
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This equation is seen as beautiful by many math-appreciators because it contains three mathematical con-
stants from three areas of mathematics: i arises from algebra; e extends from calculus; π was first defined in 
geometry. 

With regard to proving trigonometric identities, Eq.(31) provides a simple way, for example, of establish-p
ing sum of angle formulas. Take the identity cos θ/2 = (1 + cos θ)/2. This identity can be easily proven 
using complex exponentials: � �2 

eiθ/2 = (cos(θ/2) + i sin(θ/2))2 

iθ e = cos 2(θ/2) − sin2(θ/2) + i (2 cos(θ/2) sin(θ/2)) 

cos θ + i sin θ = 2 cos2(θ/2) − 1 + i (2 cos(θ/2) sin(θ/2)) (33) 

Taking the real part of both sides in the last line in Eq.(33), we find 

cos θ = 2 cos2 θ/2 − 1, (34) 

which yields one of the half-angle formulas. 

Eq.(31) is also useful in writing complex numbers in a very compact form. In general, the complex 
number a + bi can be written as 

iθ a + bi = re , (35) 
√

where r = a2 + b2 and θ = tan−1(b/a), with the ambiguity in θ resolved by inspecting the quadrant in 
which a + bi lies. 

1.5 Solving equation of motion-part 2 
With Eq.(31), we can now find the physical part of the solution Eq.(25). This physical part is simply the real 
part of Eq.(25). To find this real part we use the identity (which you should check) 

Re [(a1 + ib1)(a2 + ib2)] = a1a2 − b1b2. (36) 

Taking A+ and A− to be complex numbers defined as 

A+ ≡ B+ + iC+ and A− ≡ B− + iC−, (37) 

where B+, C+, B−, and C− are all real, we then find � � � �
iω0t −iω0t x(t) = Re A+e + Re A−e 

= B+ cos(ω0t) − C+ sin(ω0t) + B− cos(−ω0t) + C− sin(−ω0t) 
= (B+ + B−) cos(ω0t) + (−C+ − C−) sin(ω0t), (38) 

where we used Eq.(36) in the second line. For simplicity, we can define new constants B and C as 

B ≡ B+ + B− and C ≡ −C+ − C−. (39) 

Then Eq.(38) becomes 
x(t) = B cos(ω0t) + C sin(ω0t) (40) 

At last, Eq.(40) represents the most general (and completely physical) solution to the simple harmonic equa-
tion of motion Eq.(20). We note, as predicted, that this solution is composed of a sine and cosine function 
which well models our intuition of how the positions of oscillating objects evolve in time. 
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Constants of Di�erential Equations: It is important to note that the solution Eq.(40) to the second-order 
di�erential equation Eq.(20) has two independent constants (B and C) in the most general solution. 
This property can be generalized to linear di�erential equations of arbitrary orders. More generally 
the di�erential equation 

cn 
dn 

dtn 
x(t) + cn−1 

dn−1 

dtn−1 
x(t) + · · · + c1 

d 
dt 

x(t) + c0x(t) = 0, (41) 

where ck are constants would have n independent solutions. And the most general solution would 
be parameterized by n constants each of which is associated with a particular initial condition and 
each of which multiplies one of the independent solutions. 

We see this as follows: If we guess the exponential solution x(t) = aeλt, we would find that this 
guess solves Eq.(41) as long as λ satisfies the nth order polynomial 

cnλ
n + cn−1λ

n−1 + · · · + c1λ + c0 = 0. (42) 

By the fundamental theorem of algebra, Eq.(72) must have n roots. If its roots are the unique values 
λ1, . . . , λn, then the general solution to Eq.(41) is 

x(t) = a1e λ1t + a2e λ2 t + · · · ane λnt , (43) 

where a1, . . . , an are the constants which are constrained by the initial conditions. 

1.6 Initial Conditions 
Eq.(40) represents the conclusion of our search for the solution to Eq.(20). It gives us the kinematics of simple 
harmonic motion and thus a�ords us with the ability to model the situations depicted in Fig. 1. But Eq.(40) 
is not completely transparent, in particular it is not clear what B and C represent. It would be much much 
preferred if we could find a form of Eq.(40) which made the physical parameters of our system completely 
manifest. 

This can be achieved by imposing initial conditions on Eq.(40). You might recall that initial conditions 
define our coordinate and velocity variables at the origin of time in our system. We will start with the most 
general initial conditions: Let’s say our particle starts at a position x(0) = x0 and with a velocity ẋ(0) = v0. 
Given Eq.(40), we then find that B and C are 

x(t) = B cos(ω0t) + C sin(ω0t) → x(0) = B = x0 

ẋ(t) = −ω0B sin(ω0t) + ω0C cos(ω0t) → ẋ(0) = ω0C = v0. (44) 

Thus we find Eq.(40) can be written as 

v0 
x(t) = x0 cos(ω0t) + sin(ω0t), (45)

ω0 

which explicitly includes the initial conditions of the oscillator. 

1.7 Amplitude and Phase 
We will write Eq.(40) in one more form which highlights two important properties of oscillations. We intro-
duce two new real constants A0 > 0 and φ and relate these two constants to B and C through 

A0 cos φ ≡ and A0 sin φ ≡ C, (46) 
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Figure 3: Plot of Eq.(47). The amplitude A0 represents the maximum displacement from the origin and the 
phase φ defines the time shift φ/ω0 from the t = 0 point. 

Thus Eq.(40) becomes 

x(t) = A0 cos φ cos(ω0t) + A0 sin φ sin(ω0t) 

= A0 cos(ω0t − φ). (47) 

Using Eq.(44) and Eq.(46), we can write A0 and φ in terms of the initial conditions x0 and v0. Doing so, we 
have s 

2v v02 0 −1A0 = x0 + 
ω2 and φ = tan . (48) 
0 ω0x0 

The utility of the form Eq.(47) is that it explicitly includes the amplitude A (i.e., the largest displacement) and 
the phase φ (i.e., the shit from a t = 0 origin) of the periodic motion. From Eq.(48), both of these quantities 
can be determined from the initial conditions, but they uniquely allow us to plot the position as a function 
of time. Fig. 3 displays these properties given the equation x(t). What’s more, we note that ω0 defines the 
period T of our oscillation: 

T =
2π

. (49)
ω0 

T is the amount of time it takes the oscillator to return to the its initial position and velocity. Eq.(49) also 
explains why we termed ω0 the angular frequency rather than the frequency; the factor 2π represents 2π 
”radians” and thus to get a quantity with units of seconds, we need to divide 2π radians by a quantity with 
units of radians/sec. The definition in Eq.(49) is general for all simpler harmonic oscillator systems, but 
because ω0 depends on the parameters of the system the period too will depend on the parameters of the 
system. 

1.8 Energy and Potential Energy 
In Eq.(20), we encapsulated the dynamics of simple harmonic oscillator systems into a single equation, but 
the dynamics of mechanical system can be represented by another physical quantity: the energy. Knowing 
the energy of the system often allows us to determine kinematical variables in a system without having to 
work through the equation of motion. 

Before we compute the energy for the simple harmonic oscillator, we need to review what enters into the 
energy. By definition the total mechanical energy of a system is defined as 

Etot = K + U, (50) 
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where K is kinetic energy of the system and U is the potential energy. The kinetic energy for a single particle 
system is 1 m~v2 and for one-dimensional systems reduces to 2 

2K =
1 
mẋ . (51)
2 

From classical mechanics, we know that any system which has a position dependent potential energy U(x) 
also experiences a force defined as 

F (x) = − 
dU 

. (52)
dx 

By the fundamental theorem of calculus, we can use Eq.(52) to write the relationship between force and 
potential energy as an integral. Doing so we find Z x 

U(x) = U(x0) − dx0 F (x 0) [Definition of Potential Energy] (53) 
x0 

Eq.(53) allows us to compute the potential energy of systems for which the force is given. For the harmonic 
oscillator, the force is Eq.(15), and thus the potential energy (with xeq = 0) is Z x 

U(x) = U(x0) − dx0(−kx) 
x0Z x 

= U(x0) + k dx0 x 
x0 

2 = U(x0) + 
1 
k(x 2 − x0). (54)
2 

Thus we find 
U(x) = 

1 
kx2 , (55)
2 

1where in the last line of Eq.(54), we imposed the condition U(x0) = kx0
2. We see then that when the 2 

force is linear and directed toward to origin (or, more generally, the equilibrium position), the potential 
energy is quadratic. We depict this relationship in Fig. 4 

Figure 4: Graphical relationship between force and potential energy of the harmonic oscillator 

Thus with Eq.(55) and Eq.(51), we find that the total mechanical energy of the simple harmonic oscillator 
is 

2Etot =
1 
mẋ +

1 
kx2 . (56)

2 2 
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Eq.(56) reveals that for simple harmonic oscillator systems, the total mechanical energy is quadratic in both 
the velocity and position. But Eq.(56) can be even further simplified. Systems where the force can be written 
in terms of the potential energy as Eq.(52) satisfy, in microcosm, a fundamental property of our physical 
world: conservation of energy. For systems where conservation of energy applies, the total energy of that 
system does not change in time, that is 

dEtot [Conservation of Energy]. (57) 
dt 

Our simple harmonic oscillator system satisfies conservation of energy by virtue of Eq.(20). We can show by 
di�erentiating Eq.(56) with respect to time and using the chain rule, that Etot is constant in time as long as 
Eq.(20) is true. We can also demonstrate Eq.(57) another way for the simple harmonic oscillator. Inserting 
Eq.(45) into Eq.(56), we find 

2Etot =
1 
mẋ +

1 
kx2 

2 2 
1 12 2 

= m (−A0ω0 sin(ω0t − φ)) + k (A0 cos(ω0t − φ))
2 2 

=
1 
mω0

2A0
2 sin2(ω0t − φ) + 

1 
kA0

2 cos 2(ω0t − φ)
2 2 

=
1 
kA0

2 sin2(ω0t − φ) + 
1 
kA0

2 cos 2(ω0t − φ)
2 2 

=
1 
kA20, (58)
2 

where in the last line we used the definition of angular frequency. Thus we see that the total energy of the 
simple harmonic oscillator is completely defined by the amplitude of the motion. Further, if we substitute 
Eq.(48) into Eq.(58), we find � 

2 � 
1 v 1 12 0 2Etot = k x0 + = kx20 + mv0 , (59)
2 ω0

2 2 2 

which is Eq.(56) evaluated at t = 0. This result is just as we should expect if the energy is conserved: If the 
energy of the system does not change in time, then the energy at t = 0 must be the same as the energy at all 
subsequent times. 

2 The Classical Pendulum 
We have just completed a discussion of one canonical system in physics and now we will discuss a related 
one: the classical pendulum. The classical pendulum is arguably just as widespread as the spring-like os-
cillations we studied in the last section because whenever we have an object hanging from a pivot point in 
earth’s gravitational field, we have a pendulum system. The simples setup for the classical pendulum is 
shown in Fig. 5. 

We have an object of mass m attached to the end of a string of length `. The other end of the string is 
attached to a pivot point from which the mass-string system hangs. Our objective is the same as before: 
Determine the dynamics of this system and use those dynamics to determine the kinematics. 

We could start with Newton’s second law for the object of mass m: 

~ mr̈(t) = Fnet. (60) 

However, it will prove calculationally easier to proceed by using conservation of energy. For the pendulum 
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2 THE CLASSICAL PENDULUM M. WILLIAMS 

Figure 5: Classical pendulum. An object of mass m is at the end of a string of length ` and in a constant 
gravitational field pointing downward. 

system, we define the position coordinate of the object by 

~r = ` sin θ x̂+ `(1 − cos θ)ŷ, (61) 

so that when the object is at θ = 0 it is also at (x, y) = (0, 0). Given the potential energy Ugrav = mgy, we 
know that the total mechanical energy of an object of mass m in a gravitational field is 

2Etot =
1 
m~ṙ + mgy. (62)
2 

For the purpose of finding the equation of motion of this system, we will express Eq.(62) in terms of angular 
variables. Given Eq.(61) the velocity of the object is 

d
~̇r = `(sin θ x̂ − cos θ ŷ)

dt 
= `(cos θ θ̇ x̂ + sin θ θ̇ ŷ), (63) 

d dwhere we used the chain rule calculation cos θ(t) = cos θ dθ = − sin θ θ̇. Computing the magnitude dt dθ dt 
squared of this quantity, we find 

2 ~ṙ = (` cos θ θ̇)2 + (` sin θ θ̇)2 = `2θ̇2 . (64) 

Also, given Eq.(61) the y coordinate is y = `(1 − cos θ). Thus Eq.(62) becomes 

Etot =
1 
m`2θ̇2 + mg`(1 − cos θ). [Energy of a Pendulum] (65)
2 

Now, we know that the potential energy Ugrav = mgy arises from the definition of gravitational force and 
Eq.(53). Thus, because the external force exerted on our system obeys Eq.(52), our system conserves energy. 
In other words, the energy in Eq.(65) must satisfy dEtot/dt = 0. Imposing this condition on Eq.(65), we find 

dEtot 
0 = 

dt� � 

= 
d 1 

m`2θ̇2 + mg`(1 − cos θ)
dt 2 
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2 THE CLASSICAL PENDULUM M. WILLIAMS 

= m`2θ̇ d θ̇ + mg` sin θ 
d
θ 

dt dt� � 
¨ = m`2θ̇ θ + 

g 
sin θ , (66)

` 

Since m and ` are always non-zero and θ̇ is generally non-zero, we need the quantity in the parentheses to 
be zero in order for dEtot/dt to always be zero. Mandating this condition we find 

¨ θ + 
g 
sin θ = 0, [Pendulum equation of motion] (67) 

` 

which is the equation of motion of the pendulum. At this point you might object to this result. We previously 
introduced the classical pendulum in Fig. 1 and claimed that it had the same equation of motion as the 
mass-spring system. And yet, the pendulum equation of motion Eq.(67) seems quite di�erent from the 
mass-spring equation of motion Eq.(20). For one Eq.(67) is nonlinear in θ and thus does not seem amenable 
to the ”guess-and-check” method we previously employed. 

As in many areas in physics, the resolution to this problem comes from an approximation. If θ is suÿ-
ciently small, we can use the Taylor Series approximation of sin θ to write 

sin θ ' θ, [For |θ| � 1 (where θ is in radians)] (68) 

Thus, in this small-angle approximation, Eq.(67) becomes 

¨ θ(t) + 
g
θ(t) = 0. (69)

` 

Identifying the angular frequency of the pendulum system as r 

ω0 = 
g
, [For small-angle approx.] (70)

` 

we find that Eq.(69) exactly matches Eq.(20). Thus we see that in the small-angle approximation, the equation 
of motion of the pendulum indeed matches the SHO equation of motion. 

2.1 Aside: Taylor Series 
In this section, we review the construction of Taylor series. A Taylor series can conceptually be seen as a way 
to represent a function as a polynomial. In physics, we often deal with transcendental (i.e., logarithmic or 
exponential) and sinusoidal functions like 

s−2ln(x + 5), 10 sin(2t − 6), e (71) 

whose values are determined by numerical tables in textbooks or online. However, when we first learn 
algebra, we deal with polynomial expression such as 

s + 1, x 3 + 2x + 1, t2 − 2t. (72) 

xThe presumption of the Taylor series is that for certain domains of the functions ln x, e and sin x (and 
virtually any other function), we can approximate the function with a polynomial like those in Eq.(72). 
Pursuing this presumption, say we have a general function f(x) which can be approximated by a polynomial 
for x near x = 0. Writing f(x) as an arbitrary polynomial of x, we then make the claim 

∞X 
2 kf(x) = a0 + a1x + a2x + · · · = akx , (73) 

k=0 
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where the aks are the set of coeÿcients which make Eq.(73) true. Given Eq.(73), we can automatically de-
termine one of these coeÿcients. Setting x = 0 on both sides we find 

a0 = f(x). (74) 

Now, if Eq.(73) is true, we should be able to find a similar relationship for the derivatives of f(x). Di�eren-
tiating Eq.(73) once, we have 

X∞ ∞ ∞X Xd d dk k 2f(x) = akx = ak x = akkx
k−1 = a1 + 2a2x + 3a3x + · · · . (75)

dx dx dx 
k=0 k=0 k=0 

Setting x = 0 in Eq.(75), we find 
a1 = f 0(0). (76) 

We can repeat this pattern for the higher derivatives of f(x). In general, we would find that the an are given 
by 

an =
1 
f (n)(0), (77) 

n! 

where f (n)(0) stands for the ”nth derivative of f(x) which is then evaluated at x = 0”. Therefore Eq.(73) 
becomes 

∞X1 f (k)(0)2 kf(x) = f(0) + f 0(0) x + f 00(0) x + · · · = x . (78)
2 k! 

k=0 

If the summation on the right-hand-side of Eq.(78) converges to a finite value then it serves as a good rep-
resentation of f(x). We could generalize this discussion to consider the function f(x) near the point x = a 
rather than x = 0. Doing so, we find that the Taylor series becomes 

∞X1 f (k)(a)
f(x) = f(a) + f 0(a)(x − a) + f 00(a)(x − a)2 + · · · = (x − a)k , [Taylor Series] (79)

2 k! 
k=0 

which again is only valid so long as the summation converges to a finite value. 
Below we list a few Taylor Series (near x = 0) for important functions we will use in class. We include 

the domain of x in which these Taylor Series are valid. 

2 3 kx x xx e = 1 + x + + + · · · + + · · · valid for all x (80)
2! 3! k! 

3 5 2k+1x x x 
sin(x) = x − + + · · · + (−1)k + · · · valid for all x (81)

3! 5! (2k + 1)! 
2 4 2kx x x 

cos(x) = 1 − + + · · · + (−1)k + · · · valid for all x (82)
2! 4! (2k)! (� � � � � � 

n n n n is an integer valid for all x2 3 k(1 + x)n = 1 + nx + x + x + · · · + x + · · · (83)
2 3 k otherwise valid for |x| < 1 

It is worth noting that Eq.(83) is both the Taylor Series and binomial expansion of (1 + x)n. Indeed, we can 
think of Taylor Series as a sort of binomial expansion for an arbitrary function. 
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2.1.1 Period of Pendulum 

We should mention one more thing. Given Eq.(70) and the definition of period in Eq.(49), we find that the 
period of the pendulum (in the small-angle approximation) is s 

` 
T = 2π , [For small-angle approx.] (84) 

g 

Eq.(84) is consistent with the observational fact that the period of a pendulum is independent of the mass 
attached to the end of the string. Moreover, T is inversely proportional to the gravitational acceleration g 
and thus decreases with increasing strength of the gravitational field at the surface of a planet. Therefore 
swinging on a swing set would take a longer time on the moon and a short time on Saturn (assuming, of 
course, either was habitable). 

Of course, Eq.(84) is only true for |θ| � 1. For more general θ we would need the conservation of energy 
condition Eq.(65) to compute the exact period. 

3 Oscillations around Stable Equilibria 
In the previous two sections, we discovered that the mass-spring system and the pendulum, two systems 
which are quite di�erent, have equations of motion Eq.(17) and Eq.(69), respectively which are identical in 
form. The similarity between the two equations of motion can lead us toward a more general understanding 
of simple harmonic oscillator systems. We can ask the question, does this similarity suggest some wider class 
of systems which obey Eq.(20)? 

It certainly does! In fact all energy-conserving systems whose position coordinate remains near a stable 
equilibrium have dynamics defined by Eq.(20). A stable equilibrium is defined as a position where the net 
forces acting on the system are zero, and where deviations from that position result in forces which push 
the object back towards the equilibrium position. 

These ideas can be clarified if we express them mathematically. Say we have a particle of mass m which 
is acted upon by the net-force F . We will take F to be a function of the position coordinate x. By Eq.(52), 
(and assuming the system conserves energy) this force must be related to the potential energy U(x) of our 
system through the equation 

F (x) = − 
dU 

. (85)
dx 

Next, Let us say that our mass is at a position xeq where F (x) = 0: 

F (x = xeq) = 0 [Definition of equilibrium position]. (86) 

Such a position is called an equilibrium position (but not necessarily a stable equilibrium) because the net 
force acting on it is zero. Now, let us move our particle slightly from this equilibrium position by an amount 
δx so that the coordinate x becomes 

x = xeq + δx, (87) 

where δx � xeq. What is the approximate force, i.e., the approximation of Eq.(85), near this equilibrium 
position? Beginning with the potential energy, we can perform a Taylor expansion about xeq. Doing so we 
find 

1 � � 
U(x) = U(xeq + δx) = U(xeq) + U 0(xeq) δx + U 00(xeq) δx

2 + O (δx)3 , (88)
2 � �

where O (δx)3 stands in for terms proportional to δx3 or higher powers of δx. By Eq.(85) and Eq.(86), we 
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know that U 0(xeq) = 0, and so this potential energy reduces to 

1 
U(x) ' U(xeq) + U 00(xeq) δx

2 , (89)
2 

where we substituted in δx = (x − xeq) and dropped the higher order terms of δx. Now, we can compute 
the near-equilibrium approximation of Eq.(85). Given that xeq is a constant and any function evaluated at 
x = xeq is also a constant, we find 

F (x) = −U 0(x) ' −U 00(xeq)(x − xeq). (90) 

Now with the near equilibrium force Eq.(90) we can determine the near equilibrium dynamics of this system. 
Using Newton’s Second law we find 

mẍ = F (x) ' −U 00(xeq)(x − xeq). (91) 

Moving the potential energy term to the left hand side and dividing the entire equation by m, we then obtain 

U 00(xeq) 
ẍ+ (x − xeq) ' 0. (92) 

m 

We previously stated that the condition for a position xeq to be an equilibrium is that F (x) (or U 0(x)) needs 
to be zero at that position. Now in order for this position to be a stable equilibrium, we need the additional 
condition 

U 00(xeq) > 0 [Condition for a stable equilibrium position]. (93) 

If U(xeq) > 0, then we can define the angular frequency r 
U 00(xeq)

ω0 = , (94) 
m 

and Eq.(92) would become 
ẍ+ ω0

2(x − xeq) ' 0, (95) 

or, with x − xeq = δx, 
¨ δx(t) + ω0

2 δx(t) ' 0. (96) 

We use the ”approximately equal” symbol ' because Eq.(96) is only valid for δx suÿciently small. Eq.(96) is 
identical in form to Eq.(20) and thus all our previous results (amplitude, period, phase, energy properties) 
for the simple harmonic oscillator apply to the system defined by Eq.(96) as well. Thus, we can understand 
why the simple harmonic motion is so ubiquitous. The world contains many di�erent systems which are 
at or near a stable equilibrium, and when these systems are perturbed from that equilibrium they must 
undergo motion defined by Eq.(96). 

To review, the two conditions required in order for a point x = x1 to be a stable equilibrium (and thus 
for it to exhibit simple harmonic motion defined by Eq.(96)) are 

– First derivative is zero: U 0(x1) = 0 
– Second derivative is positive: U 00(x1) > 0 

More formally a stable equilibrium of a system is associated with a local minimum of the potential en-
ergy. A function U(x) can have multiple stable equilibria and around each equilibrium the particle would 
undergo simple harmonic oscillations. This is because around each equilibrium we can approximate U(x) 
as a quadratic function (See Fig. 6). 

The results of this section are so important they deserve to be stated as a theorem of mathematical 
physics. 
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Figure 6: A general function U(x) can be approximated as a quadratic function near a stable equilibrium 
xeq. 

SHO theorem of physics: All energy-conserving physical systems with position coordi-
nates suÿciently close to a stable equilibrium have an equation of motion of the form 

¨ δx(t) + ω2 
0 δx(t) ' 0, (97) 

where δx(t) is the position coordinate’s deviation from the equilibrium xeq, and ω0 is the 
angular frequency. Given the potential energy U(x) this angular frequency is 

ω0 = 

r 
U 00(xeq) 

m 
, (98) 

where xeq is the coordinate where U 0(x) = 0 and m is the mass of the system. 

This theorem is why we can have the three rather di�erent systems of Fig. ?? which nevertheless have 
the same equation of motion. 

We have not completed our fist foray into the physics of oscillating systems. In the next lecture notes 
we will complicate this story by relaxing our ideal ”energy-conserving” assumption and considering what 
happens when oscillating systems are subject to fluid drag. 

3.1 Interaction of Atoms 
In this section, we provide an example of the above outlined procedure and thus show that we find small 
oscillations in systems which are near equilibrium 

When atoms (or molecules) are separated by distances of about an angstrom (i.e., 10−10 m), they interact 
through what is known as the Lennard-Jones potential. The Lennard-Jones potential gives the potential 
energy of interaction between the two atoms as a function of the distance between them. For example, two 
Argon atoms separated by a distance r would interact with the potential energy �� �12 

�� �6rm rm
U(r) = � − 2 (99) 

r r 

where � and rm (both of which are positive) have the units of energy and distance, respectively, and both 
parameters can be experimentally determined. We want to answer two questions: 
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Figure 7: Image from Wikipedia entry on Lennard-Jones 

Image courtesy of TimeStep89 on Wikipedia. License CC BY. 

1. At what value of r is the force between the atoms zero? (This value of r is what we call the 
equilibrium position.) 

2. Second, what is the (angular) frequency of small oscillations about this equilibrium position? 

To answer the first question we use the definition of force in terms of potential energy to find � ��� �11 � �5 �dU rm rm rm
F (r) = − = −� 12 − 12 − 

r2 
, (100)

dr r r 

dwhere we used the chain rule and (rm/r) = −rm/r
2. To find the value of r where this force is zero (i.e., dr 

where the interacting atoms are in equilibrium), we set this quantity to zero and solve for r. Doing so we 
obtain 

0 = F (r)� ��� �11 � �5 � rm rm rm 
= � 12 − 12 

r r r2 � �11 � �5rm rm 
= 

r r� �6rm 
= 1. (101) 

r 

The last equality implies that the solution is r = rm. Thus we find that the force F (r) = −U 0(r) is 0 when 
r = rm. 

Now, in order to determine whether there are small oscillations about this point, we can either expand 
Eq.(99) about r = rm and keep the quadratic term, or we can take the second derivative of Eq.(99) and 
(according to Eq.(??)) check that the result is zero. We will do the latter. Taking the second derivative of 
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Eq.(99), we find 

d2 d2 � �� �12 � �6 
�� 

rm rm
U(r) = � − 2 

dr2 dr2 r r� � � � �5 
�� �� 

d rm 
�11 rm rm 

= � 12 − 12 − 
dr r r r2 � � ��� �10 �7 �2rm rm rm 

= � 132 − 60 − 
r r r2 � �� �� �11 � �5rm rm 2rm 

+ � 12 − 12 . (102) 
r r r3 

Taking r = rm, we find that the second term in the last line of Eq.(102) is zero. Thus only the first term 
remains and we obtain " � #�� �10 �7 �2 

U 00(r = rm) = �
rm rm rm 72� 

132 − 60 − = + . (103) 
r2 r2rm rm m m 

With � > 0, we indeed see that Eq.(??) is satisfied and thus this system is capable of small oscillations about 
r = rm. We can thus conclude that Eq.(99), for r close to rm, satisfies the approximation ��� rm 

�12 � �6rm
U (r) = � − 2 

r r 

= U(rm) + U 0(rm)(r − rm) + 
1 
U 00(r)(r − rm)

2 + · · · 
2 

36� 
= −� + 

r2 
(r − rm)

2 + · · · . (104) 
m 

where we used Eq.(??) to obtain the second line, and we used Eq.(99), Eq.(100) and Eq.(103) to obtain the 
last line. 

We therefore see that the potential energy Eq.(99) can be approximated by a quadratic function of r when 
r is near the equilibrium position. This indicates that for r near rm, the two interacting atoms can undergo 
simple harmonic motion. 

Now we want to know the frequency of the oscillation. If we treat the position of one of the atoms as 
fixed (let’s say one atom has a much larger mass than the other atom5), then the other atom of mass m has 
the equation of motion 

mr̈ = F (r), (105) 

where r̈ is the acceleration of the atom and F (r) is the force from the potential Eq.(99). Given the approximate 
potential energy Eq.(104), and the definition of the derivative we find that this equation of motion can be 
approximated as � � 

d 36� 72� 
mr̈ = F (r) = − −� + (r − rm)

2 + · · · = − (r − rm) + · · · . (106)
dr r2 r2 

m m 

If we then define R as 
R ≡ r − rm, (107) 

5This is not the standard way this potential is studied, but we make this simplification in order to not have to introduce the concept 
of reduced mass. 
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then the time derivative of R is equal to the time derivative of r (because rm is constant): 

d d d 
(R) = (r − rm) = r, (108)

dt dt dt 

d2 d2

and similarly R. Therefore the approximate equation of motion becomes dt2 r = dt2 

72�¨ mR ' − 
r2 

R + · · · , (109) 
m 

or, dividing by m, moving all terms to one side, and dropping the higher order terms 

¨ R + ω2 
0 R = 0, (110) 

where we defined s 

ω0 ≡ 
72� 

. 
mr2 

m 
(111) 

Eq.(110) is the equation for simple harmonic motion. Therefore, we see that the potential energy Eq.(99) 
produces simple harmonic motion when r is close to rm and that this motion has an angular frequency of 
Eq.(111). 

Solving Eq.(110), we find that the atoms oscillate about their equilibrium position according to 

R(t) = R0 cos(ω0t) + 
V0 
sin(ω0t), (112)

ω0 

where R0 is the initial value of R(t) and V0 is the initial value of Ṙ(t). 
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