
Massachusetts Institute of Technology MITES 2017–Physics III 

Lecture 05: Driven Oscillations 

In these notes, we derive the properties of both an undamped and damped harmonic oscillator under the 
influence of a sinusoidal-in-time driving force. This discussion is supplemented by the important physics 
concepts of beats and resonance. 

1 Pushing your Friend on a Swing 

Figure 1: Pushing your friend on a swing 

Say you go to the playground and jump on the swing. If you walk yourself to an initial angle away from 
the vertical and release, your motion (assuming you stay pretty still in your seat) would be well described 
by the equation 

b g¨ θ + θ̇ + sin θ = 0, (1) 
m ` 

where b is your drag coeÿcient and ` is the length of the swing. If your initial angle is suÿciently small, 
your motion would be described by the even simpler equation 

b g
θ ̈+ θ̇ + θ = 0, (2) 

m ` 

Given what we previously, learned we know that the motion of the swing is underdamped, and thus, over 
time, your swing amplitude will gradually get smaller and smaller until you’re making barely perceptible 
oscillations around the equilibrium position. This would be a sad situation indeed, so you ask your friend 
to combat the insidious forces of air drag by pushing you on the swing. But now comes the question of 
technique: How should your friend push you so that you achieve the highest swing? 

If you’ve ever been on a swing, you probably believe from experience that your friend should give you 
a strong push whenever you reach the apex of your swing. In physics-speak, this is tantamount to your 
friend pushing you with the same frequency and in the same phase as your swing. That is, whenever you 
complete one period of motion your friend applies a force, and this force is maximum whenever you’re at 
your maximum angle. Given what we know about oscillators we should be able to explain why this is the 
case (or even if it is the case). That is our objective in this lesson. 

We will specify our forces to be ”periodic” forces because periodic forces 1) best model the force your 
friend applies to you on the swing and 2) are relatively simple forces to analyze for the harmonic oscillators. 
In what follows we will further specify the label ”periodic” to be ”sinusoidally periodic” because sinusoidal 
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2 DRIVEN UNDAMPED OSCILLATOR M. WILLIAMS 

functions are the simplest periodic functions and are therefore convenient entry points into a more general 
analysis. Moreover, due to the magic of Fourier analysis, by considering sinusoidal forces we are in fact 
laying the ground work to consider all types of time-dependent forces. Thus our framing question is 

Framing Question 

What are the properties of harmonic oscillators driven by an external sinusoidal force? 

2 Driven Undamped Oscillator 

Figure 2: Driven Undamped Harmonic Oscillator 

Our ultimate objective is to determine the properties of a damped harmonic oscillator driven by an exter-
nal sinusoidal force. But before we explore this desired case, we will consider the relatively simpler system 
of a driven undamped oscillator. In other words, we return to our simple harmonic oscillator system from 
the second lecture and apply an external sinusoidal force to the oscillating block. The situation is depicted 
in Fig. 2. 

We have a block of mass m acted upon by a spring of spring constant k (with an equilibrium position at 
x = 0) and by an external force F0 cos(ωt). By Netwon’s second law, the equation of motion of the block is 

mẍ = Fnet = −kx + F0 cos(ωt), (3) 

or, upon adding kx to both sides and dividing by m, 

ẍ+ ω0
2 x = 

F0 
cos(ωt), (4) 

m p
where ω0 = k/m. Eq.(4) is the equation of motion of this system, and in order to more precisely character-
ize this system we need to solve it. To solve Eq.(4) we will guess a particular solution and then manipulate 
its parameters in order to make it consistent with Eq.(4). Given the ”cos(ωt)” term on the right-hand-side of 
Eq.(4), we make the informed guess that its solution should be of the form 

? 
x(t) = A cos(ωt), (5) 

where we note that ω is the angular frequency of the driving force and is not ω0, the natural frequency of 
the oscillator. Inserting Eq.(5) into Eq.(4), we find 

F0 
cos(ωt) = ẍ(t) + ω0

2 x(t) 
m 

= −ω2 A cos(ωt) + ω0
2A cos(ωt) 
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= (ω0
2 − ω2)A cos(ωt). (6) 

The first and last line of Eq.(6) are only equivalent if A = (F0/m)/(ω0
2 − ω2). Therefore, given Eq.(5), we find 

that a particular solution to Eq.(4) is 
F0/m 

x(t) = cos(ωt). (7) 
ω2 − ω2 
0 

However, there is a problem with Eq.(7): It doesn’t contain any free parameters. All of the parameters in 
Eq.(7) are determined by the properties of the block and driving, and so we cannot impose initial conditions 
on the system in order to obtain motion for our specific setup of the system. 

We can resolve this problem by recognizing that Eq.(7) is only part of the solution to Eq.(4). Specifically, 
if we have a function xh(t), which has two free parameters and which satisfies the di�erential equation 

ẍ h(t) + ω0
2 xh(t) = 0, (8) 

then the solution 
x(t) = xh(t) + xp(t), (9) 

where xp is given by Eq.(7) would also have two free parameters but would satisfy Eq.(4). We can see this 
as follows: 

ẍ(t) + ω0
2 x(t) = ẍ h(t) + ẍ p(t) + ω0

2 xh(t) + ω0
2 xp(t)� � � � 

= ẍ h(t) + ω0
2 xh(t) + ẍ p(t) + ω0

2 xp(t) 

F0 F0 
= 0 + cos(ωt) = cos(ωt). (10) 

m m 

Thus, the general solution to Eq.(4) is given by Eq.(9), where xh(t) is the general solution to Eq.(8). From the 
second lecture, we already know the general solution of Eq.(8), so we find that Eq.(9) is 

F0/m 
x(t) = B cos(ω0t) + C sin(ω0t) + cos(ωt), (11)

ω2 − ω2 
0 

where B and C are arbitrary constants. Alternatively, the general solution can be written as 

F0/m 
x(t) = A0 cos(ω0t − φ) + cos(ωt), (12)

ω2 − ω2 
0 

√
where Eq.(12) and Eq.(11) are related by B2 + C2 = A0 and tan−1 C/B = φ. 

Eq.(12) is our desired kinematic equation for the situation depicted in Fig. 2. We can develop an ever 
deeper physical understanding of this situation by considering the motion for specific initial conditions. Say 
our oscillator starts at a position x(t = 0) = 0 m with velocity ẋ(t = 0) = 0 m/s. Imposing these conditions 
on Eq.(12), we find 

F0/m
φ = 0 and A0 = − , (13)

ω2 − ω2 
0 

which leads to the solution h iF0/m 
x(t) = cos(ωt) − cos(ω0t) . (14)

ω2 − ω2 
0 

One thing we notice about Eq.(14) is that it doesn’t seem to be defined for ω = ω0; as ω → ω0 the coeÿcient of 
the second term goes to infinity. No matter for the moment. What does the motion look like when ω = ω0? 
For arbitrarily chosen parameters, we plot Eq.(14) in Fig. 3. The motion seems to be a strange amalgamation 
of two oscillations: There is a fast oscillation which seems to be occurring within the envelope of a much 
slower oscillation. In other words, we have a sinusoid whose amplitude is itself oscillating sinusoidally! 
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Figure 3: The superposition of two sinusoids which are close in frequency leads to beating 

This phenomena is termed a beat phenomena or simply beating. We can better understand it by apply-
ing a trigonometric identity to Eq.(14). With the identity 

α − β α + β 
cos α − cos β = −2 sin sin ,

2 2 
(15) 

we find Eq.(14) becomes � � � � 
2F0/m 

x(t) = sin 
ω2 − ω2 

0 

(ω − ω0)t 
2 

sin 
(ω + ω0)t 

2 
(16) 

Eq.(16) is precisely the behavior we observe in Fig. 3: A sinusoid oscillating at the fast frequency (ω + ω0)/2 
whose amplitude is modulated at the slower frequency (ω − ω0)/2. By convention, we define the beat 
frequency as the frequency at which the more slowly envelope goes to zero. Thus the beat frequency is 
twice the frequency of the sin((ω − ω0)t/2) factor, that is 

ωbeat 1 |ω − ω0| |ω − ω0|
fbeat = = × 2 × = . (17) 

2π 2π 2 2π 

What’s more, Eq.(16) predicts that as the driving frequency ω gets closer and closer to the natural frequency 
ω0, the slow frequency oscillations go to zero and only the fast frequency oscillations remain. But we can’t 
make this prediction yet, because the denominator in Eq.(16) goes to zero in this limit as well. We consider 
this problem in the next section. 

2.1 Resonance 

In the previous section, we were able to quantitatively describe the undamped and driven oscillator for the 
case where ω 6= ω0, but what happens when ω → ω0? We begin with our solution to the driven simple 
harmonic oscillator for the condition x0 = 0 and v0 = 0: � � � � 

2F0/m (ω − ω0)t (ω + ω0)t 
x(t) = sin sin . (18)

ω2 − ω0
2 2 2 

To determine what happens as ω → ω0, we define Δω by the equation 

ω = ω0 +Δω, (19) 
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Figure 4: Driven Simple Harmonic Oscillator at Resonance 

and take the limit Δω/ω0 � 1. With the definition Eq.(19), we find � � 
(ω + ω0)t 

sin = sin (ω0t +Δω t/2) = sin(ω0t) + O(Δω) (20)
2� � 

(ω − ω0)t � � 
sin = sin (Δω t/2) = Δω t/2 + O (Δω)3 (21)

2 � � 
ω2 − ω0

2 = (ω + ω0)(ω − ω0) = 2ω0Δω + O (Δω)2 . (22) 

Thus Eq.(18) to lowest order in Δω is � � �� �2F0/m � 
x(t) = Δω t/2 + O (Δω)3 sin(ω0t) + O(Δω)

2ω0Δω + O ((Δω)2) 

= 
F0 

t sin(ω0t) + O(Δω). (23)
2mω0 

Currently, with Δω � ω0, our driven frequency ω is close (but not quite equal) to ω0. Taking the Δω → 0 
limit of Eq.(23), is tantamount to taking ω → ω0 and doing so yields 

x(t) = 
F0 

t sin(ω0t) (24)
2mω0 

When the driving frequency matches the natural frequency of an oscillator we say that the system is in 
resonance. One of the main features of resonance is that the amplitude of oscillation is at a value higher 
than it would be if the system were not in resonance. For the simple harmonic oscillator, the resonance 
solution Eq.(24) exhibits an amplitude which increases linearly in time (See Fig. 4). Thus for long times 
the harmonic oscillator amplitude appears to increase without bound. However, the result Eq.(24) is not 
true to reality because for large enough amplitudes of motion the simple harmonic oscillator equation of 
motion no longer applies. Namely, with large for large amplitudes we would need to incorporate nonlinear 
or energy dissipating terms into the harmonic oscillator equation of motion. We consider the e�ect of energy 
dissipating terms in the next section. 
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3 Driven Damped Oscillator 

Figure 5: Driven Damped Harmonic Oscillator 

At resonance, the velocity of the driven undamped harmonic oscillator is the time derivative of Eq.(24): 

F0 F0 
ẋ(t) = sin(ω0t) + t cos(ω0t) (25)

2mω0 2m 

The second term of Eq.(25) increases without bound as t increases thus indicating that the driven simple 
harmonic oscillator goes faster and faster as time goes on. If this were to occur in a real system (and not 
just an idealized model) then, eventually, velocity dependent forces like the drag force Fdrag = −bẋ would 
become relevant. Thus, to better understand how real oscillating systems are a�ected by driven oscillations, 
it is better to consider drag forces from the start. We can analyze such a driven and damped oscillator by 
including a drag force in Eq.(3): 

mẍ = Fnet = −kx − bẋ+ F0 cos(ωt), . (26) 

The resulting equation of motion is then 

ẍ+ 2γẋ+ ω0
2 x = 

F0 
cos(ωt), (27) 

m 

where γ = b/2m and ω2 = k/m. Eq.(27) is so far the most general equation we’ve considered for harmonic 0 
motion. It is a damped and sinusoidally driven harmonic oscillator. As always, our goal is to solve this 
equation. To do so we will make use of a simple trick. We will define x(t) as the real part of a complex 
variable z(t): 

x(t) = Re[z(t)] (28) 

and say the equation of motion of z(t) is 

F0 iωt z̈ + 2γż + ω0
2 z = e , (29) 

m 

Taking the real part of Eq.(29) and using Eq.(28), we find Eq.(27). Therefore, if we find the general solution 
to z(t) and take the real part, we should find the general solution of x(t). To find the solution to Eq.(29), we 
follow a method analogous to that in the previous section. We take the general solution to be 

z(t) = zh(t) + zp(t) (30) 

where zh(t) is the homogeneous solution to Eq.(29) (i.e., the solution for F0 = 0), and zp(t) is the solution 
we find after using a zp(t) = Aeiωt guess. 

First, considering the homogeneous solution, we know from the previous lesson that the general solution 
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to Eq.(29) when F0 = 0 is ( 
α+ t α− tA+e + A−e when α+ 6= α− 

zh(t) = (31)−γt (B + Ct)e when α+ = α− 

where q 
α± = −γ ± γ2 − ω0

2 , (32) 

and A±, B, and C are arbitrary parameters which are specified by the initial conditions. 
Now, considering the particular solution, we insert the guess 

(t) = Aeiωt zp (33) 

into Eq.(29) and determine what A should be in order for the equation to be valid. Doing so we find 

F0 iωt e = z̈ + 2γż + ω0
2 z 

m 

0 Aeiωt = −ω2Aeiωt + 2iγωAeiωt + ω2 (34) 

which implies A must be the complex quantity 

F0/m
A = , (35)

ω0
2 − ω2 + 2iγω 

writing out the particular solution in terms of A we find 

F0/m iωt zp(t) = e . (36)
ω0
2 − ω2 + 2iγω 

√
Noting a + bi = a2 + b2(cos θ + i sin θ) where tan θ = b/a, we can write q 

ω0
2 − ω2 + 2iγω = (ω2 − ω2)2 + 4γ2ω2 (cos φdr + i sin φdr) (37) 0 

where 
tan φdr ≡ 

2γω 
. (38)

ω2 − ω2 
0 

Therefore with Eq.(37) the particular solution becomes 

F0/m iωt zp(t) = e 
ω0
2 − ω2 + 2iγω 

i(ωt−φdr)= Adre . (39) 

where 
F0/m

Adr ≡ p . (40) 
(ω2 − ω2)2 + 4γ2ω2 
0 

Combining Eq.(31) and Eq.(39) into Eq.(30) and taking the real part, we find the solution 

x(t) = xh(t) + Adr cos(ωt − φdr), (41) 

where Adr and φdr are given in Eq.(40) and Eq.(38), respectively, and where the homogeneous solution is 
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(again from the previous lesson) ⎧ ⎪A0e −γt cos(Ωt − φ) when γ < ω0⎨ � �−γt Γt −Γt xh(t) = e A+e + A−e when γ > ω0 (42)⎪⎩ −γt (B + Ct)e when γ = ω0 p p
with Ω = ω2 − γ2 and Γ = γ2 − ω0

2. Eq.(41) is the desired form of the solution to the driven and damped 0 
harmonic oscillator. From this solution, we see that for long times the homogeneous solution goes to zero 
due to the e−γt factor, and we are left with the particular solution: 

F0/m 
x(t) = p cos(ωt − φdr) [For long times, i.e., for t � 1/γ] (43) 

(ω2 − ω2)2 + 4γ2ω2 
0 

This long time solution is interesting given that the oscillator is driven by the force F (t) = F0 cos(ωt). Com-
paring the driving force to the solution, we see that the solution lags behind the driving force by a phase 
φdr. Also, although it is not precisely clear from the solution Eq.(43), the frequency at which the amplitude 
of the position is maximized is not the frequency of the undamped oscillator ω0. We analyze these features 
behavior more in depth in the following section. 

3.1 Amplitude and Resonance 

In analyzing the long time solution Eq.(43) the two quantities which are of particular importance are the 
amplitude and phase. 

The amplitude tells us the the resonant frequency of our system. We define the resonant frequency as 
the frequency at which the amplitude of the long-time oscillation is maximized. Given Eq.(43), we see that 
this amplitude is maximized if the denominator is minimized. Noting that the square root of a function 
is optimized when the function itself is optimized, we can find the resonant frequency using the standard 
algorithm: 

d � 
(ω2 

� 
0 = 0 − ω2)2 + 4γ2ω2 = 2(ω0

2 − ω2)(−2ω) + 8γ2ω, (44)
dω p

which gives the critical points ω = 0 and ω = ω2 − 2γ2. Performing the second derivative test, we find 0 � �d2 

(ω0
2 − ω2)2 + 4γ2ω2 = −4(ω02 − ω2) + 8ω2 + 8γ2 , (45)

dω2 

which is negative (i.e., yields a local minimum) for ω = 0, and is positive (i.e., yields a local maximum) for p
ω = ω2 − 2γ2, both contingent on the assumption ω2 > 2γ2; if ω0 < 2γ2 then the resonant frequency 0 √ 0 
is zero. Therefore, (for ω0 > γ 2) we find that the resonant frequency of the damped harmonic oscillator 
system is q 

ωres = ω2 − 2γ2 , (46)0 p
which, interestingly, is slightly smaller than the frequency Ω = ω2 − γ2 of the under damped motion. This 0 
implies that a sinusoidally various force produces the largest amplitude motion for the damped harmonic 
oscillator if the force is oscillating slightly slower than the un-driven frequency of the oscillator. 

In spite of the interesting nature of Eq.(46), for our future work it will prove easiest to consider our system 
in the very weakly damped scenario in which ω0 � γ. In this very weakly damped limit, the resonance 
frequency Eq.(46) simplifies to 

ωres ' ω0 ' Ω. (47) 

We plot Adr in this limit of γ/ω � 1 in Fig. 6a. In Fig. 6b we plot Adr in the case where very weak damping 
does not apply. 
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(a) (b) 

Figure 6: Amplitude of driven damped oscillator for two regimes of γ/ω0 

What happens to the phase Eq.(38) at resonance for ω0 � γ? Taking ω = ωres ' ω0 we find 

tan φdr ' ±∞. (48) 

Given that sin φdr = 2γω/Adr > 0, we then find that φdr ' π/2 at resonance. Therefore, at resonance the 
long time solution Eq.(43) becomes 

F0 F0 
x(t) ' cos(ωt − π/2) = sin(ωt) [Resonant solution in the ω0 � γ limit], (49)

2mγω0 2mγω0 

which implies that the position is 90◦ or π/2 out of phase with the force F (t) = F0 cos(ωt). In particular, the 
position lags behind the force by a quarter of a period, such that when the force is at a maximum or minimum 
the position is zero and vice versa. For example, when the oscillator is moving past its equilibrium position 
x = 0, the magnitude of the driving force is greatest, and when the position is at its amplitude, the driving 
force is zero. 

In and out of phase: What do we mean when we say two oscillating functions are ”in phase” or ”out 
of phase”? 

First, we can only speak of two oscillating functions as being in or out of phase if they have the 
same frequency. Second, we say that two oscillating functions are ”in phase” when then their peaks 
and valleys occur at the same time; otherwise the functions are out of phase by the amount needed 
to shift them into phase. Here are some examples 

– cos(ωt) vs cos(2ωt): Di�erent frequencies, so the functions are neither in or out of phase 
– cos(ωt) vs 4 cos(ωt): Same frequency with constant o�set functions, so the functions are in phase 
– cos(ωt) vs sin(ωt): Same frequency, but sin(θ) = cos(θ − π/2) so the functions are 90◦ or π/2 

radians out of phase. 

The reason that resonance leads to a 90◦ phase di�erence between the position and force can be explained 
using energy1 In order to achieve resonance, we want to maximize the amplitude of our oscillator motion. 
This occurs when the driving force supplies as much energy as possible to the oscillator, or equivalently does 
as much work as possible on the oscillator. With the definition W = F Δx we can infer that the maximum 

1This explanation is transcribed from [1]. 
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work is done on the system when the largest force is applied over the greatest distance. Given a fixed interval 
of time, the oscillator is covering the greatest distance when it is moving the fastest, namely when it is at its 
equilibrium position. Correspondingly, the oscillator is covering the smallest distance when it is moving the 
slowest, namely at the ends, or amplitudes, of its motion. Thus in order to eÿciently supply the maximum 
amount of work, the force should be at its max when the oscillator is near its equilibrium and should be at 
its min when the oscillator is at its amplitude. 

3.2 Phase and Frequency 

(a) (b) 

Figure 7: Phase of driven damped oscillator for two regimes of γ/ω0 

We previously found the phase of the solution Eq.(43) when the frequency was at resonance. What are 
the properties of this phase, for other frequencies? 

– ω ' ω0 → φ = π/2: Oscillator and driving force are 90◦ out of phase; Resonance condition dis-
cussed above. 

– ω ' 0 → φ = 0: Oscillator and driving force are in phase; x ∼ F0 cos(ωt). 
Explanation: With a small driving frequency, Eq.(43) tells us that ẍ and ẋ are very small. Therefore the 
equation of motion mẍ = −kx − bẋ+ F0 cos(ωt) becomes approximately 0 ' −kx + F0 cos(ωt) which 
implies x(t) ' F0/k cos(ωt). 

– ω ' ∞ → φ = π: Oscillator and driving force are 180◦ out of phase; x ∼ −F0 cos(ωt). 
Explanation: By Eq.(43), the ω → ∞ limit implies the x(t) and ẋ(t) are small and close to zero. This 
implies that the particle remains near the origin and is mostly stationary. Therefore the net force 
Fnet = −kx − bẋ + F0 cos(ωt) can be approximated as Fnet ' F0 cos(ωt). By newton’s second law, we 
then have ẍ ' F0/m cos(ωt) which in turn implies x ' −F0/mω2 cos(ωt). 

We depict this phase behavior as a function of ω for various values of γ/ω0 in Fig. 7a. In Fig. 7b we see 
how these phase limits manifest when the damed system is near critical damping. 

4 Swing Revisited 

Question: With what frequency and with what phase should your friend push you on a swing in 
order to give you your maximum displacement? 
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Having developed the theory of forced and damped oscillations we are now better prepared to analyze 
the scenario which motivated this lesson: Your friend pushing you on a swing. We first asked at what 
frequency your friend should push you in order to give you your maximum amplitude? If we take the swing 
to be very weakly damped (which is arguably a good approximation for a pendulum), and we approximate 
your friends pushing force as a sinusoidal function (which is admittedly not a very good approximation for 
a pushing force) then Eq.(47) tells us that what we guessed before: your friend should push you at the same 
frequency at which you’re swinging. 

ωpush ' ω0. (50) 

But our discussion of phase indicates there is another relevant variable to consider here: At what point 
during your swing should your friend apply this force? 

If you have ridden on a swing before and been pushed by someone else, likely that person applied their 
force when your were at the top (i.e., the maximum position) of your motion. But, in fact, this is not the way 
to go. 

Our previous theoretical works (specifically Eq.(49)) suggests that, assuming your friend is applying a 
fixed force for a fixed duration of time, then he should apply that force when you are at the bottom of your 
motion rather than at the top. Namely, in order for you to swing as high as possible, your friend should apply 
a maximum force at the point when you are moving quickly at your minimum angle rather than when you 
are relatively stationary at your maximum angles. Mathematically, this means that the phase at which your 
friend should push you should be π/2 ahead of the oscillation of your swing. 

φpush ' +π/2 (51) 

This ”optimal pushing configuration” is depicted in Fig. 8 

Figure 8: Most eÿcient way to push your friend on a swing 

The reason people rarely push their friends this way in practice (other than the fact that people don’t 
know the general physics of the situation) is that it is rather diÿcult for someone to safely apply a force to 
an object which is moving really quickly. 
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