
Massachusetts Institute of Technology MITES 2017–Physics III 

Lecture 06: Coupled Oscillations 

In these notes we consider the dynamics of oscillating systems coupled together. To fully describe such 
systems we introduce the linear algebra concepts of eigenvectors and eigenvalues. We end by considering 
what the dynamics might look like if we considered an arbitrarily large system of oscillators together. 

1 Oscillators are usually coupled 

So far we’ve been studying oscillators individually. This is good for getting a handle on the techniques used 
to understand oscillations, but we eventually have to move beyond this simplification because in real-life os-
cillators rarely exist by themselves. Instead, real oscillators are almost always coupled to other systems and, 
in particular, other oscillators. For example, the chair or bed you’re sitting on is composed of many atoms 
linked together in configurations which very much resemble chains of harmonic oscillators. We would even-
tually hope to describe something of the physics of such systems, so to do so we need to ask a new question. 

Framing Question 

How do we model many oscillators which are coupled together? 

Figure 1: Simplest coupled oscillator system. Most oscillators in real life are coupled to other oscillators. 

We will start simply first. In Fig. 1 we display two oscillators coupled end-to-end, a configuration we 
call in series. Our goal would be to characterize a system such as that in Fig. 1 (and its more complicated 
generalizations) as completely as we characterized the simpler one-oscillator systems. 

2 Two Coupled Oscillators 

We begin (as we usually do) with the simplest possible system. After we suÿciently understand this sys-
tem, we will introduce additional features to bring us closer to the complexity which better resembles real 
systems. In Fig. 2, we reproduce our above coupled-oscillator picture with a specification of the relevant 
coordinates and parameters. We have two particles of the same mass m connected by a spring of spring 
constant k. Each mass is also connected to an adjacent wall by a spring of spring constant k. We define the 
positions of the left and right mass by x1 and x2, respectively, and we will take the stable equilibrium of the 
system to be defined at x1 = x2 = 0. Our objective is to find the equations defining the dynamics of this 
system and then find the general solution to those equations. 

We start o� with Newton’s second law for both masses: 

mẍ  1 = Fnet,1 = −kx1 + k(x2 − x1) (1) 
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2 TWO COUPLED OSCILLATORS M. WILLIAMS 

Figure 2: System of two coupled oscillators. 

mẍ  2 = Fnet,2 = −k(x2 − x1) − kx2 (2) 

Each of the spring force terms in Eq.(1) and Eq.(2) can be determined by taking one of the masses to be 
stationary and considering what forces would be exerted on the other mass as it moves from its center. 
Now, we would like to solve this system of equations, but it appears that to solve the x1 equation, we would 
need to know x2, but to figure out x2, we would need to know x1. So this system may initially appear 
impossible to solve. 

Progress, can be made through superposition. Let us add Eq.(1) and Eq.(2): 

m(ẍ  1 + ẍ  2) = mẍ  1 + mẍ  2 

= −kx1 + k(x2 − x1) − k(x2 − x1) − kx2 

= −k(x1 + x2) (3) 

and then let us subtract Eq.(1) and Eq.(2): 

m(ẍ  1 − ẍ  2) = mẍ  1 − mẍ  2 

= −kx1 + k(x2 − x1) + k(x2 − x1) + kx2 

= −3k(x1 − x2) (4) 

Considering both sides of Eq.(3) and both sides of Eq.(4), we find that our system is immediately soluble if 
we define 

x+ = x1 + x2 and x− = x1 − x2. (5) 

With these definitions the above equations of motion become 

ẍ + = −ω0
2 x+ and ẍ − = −3ω0

2 x−, (6) p
where we defined the natural frequency ω0 = k/m. We have thus managed to transform our system of 
two coupled di�erential equations in Eq.(1) and Eq.(2), into two independent simpler harmonic oscillator 
equations of motion. We well know how to find the general solution to the equations in Eq.(6) and so by 
Eq.(5) we can also find the general solution for x1 and x2. From our previous work, we have 

√ 
x+(t) = A+ cos(ω0t − φ+) and x−(t) = A− cos( 3ω0t − φ−) (7) 

where A± and φ± are arbitrary constants with units of meters and radians respectively. Inverting Eq.(5), we 
have 

x1 = 
1
(x+ + x−) and x2 = 

1
(x+ − x−). (8)

2 2 
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Thus, with Eq.(7), the general solution for Eq.(1) and Eq.(2) is 

√1 1 
x1(t) = A+ cos(ω0t − φ+) + A− cos( 3ω0t − φ−)

2 2 
√ 

x2(t) = 
1 
A+ cos(ω0t − φ+) − 

1 
A− cos( 3ω0t − φ−) (9)

2 2 

Since A+ and A− are undetermined constants we can in practice rescale them by 2 to absorb the factors of 
1/2 in Eq.(9). Also, the symmetry of the solution Eq.(9) suggests a convenient matrix representation. Letting 
x1 and x2 be the two components of a two-dimensional column vector, we can write Eq.(9) as � � � � � � 

x1(t) 1 1 √ 
= A+ cos(ω0t − φ+) + A− cos( 3ω0t − φ−) (10)

x2(t) 1 −1 

where we absorbed the factors of 1/2 into a redefinition of A±. 
Eq.(10) turns out to be the most convenient form of the general solution to Eq.(1) and Eq.(2). It separates 

the two distinct sinusoidal contributions to the general solution and parameterizes each sinusoid by a vector. 
These vectors and sinusoids are important because together they make up all possible motions of the system. 
Indeed, any oscillating setup of the system depicted in Fig. ?? can be represented by Eq.(10) with appropriate 
choices of A+ and A−. 

2.1 Normal Modes 

(a) Symmetric motion (b) Antisymmetric motion 

Figure 3: Normal mode motions for Fig. ??. Figure from [1]. 
See image credit at the bottom of Page 9. 

In Eq.(10), the vectors multiplying each sinusoid are called the normal modes of the motion: � � � � 

normal modes: 1 and 1 
, (11)

1 −1 

and the angular frequencies at which the sinusoids oscillate are called the normal mode angular frequencies 
or simply (and somewhat incorrectly) the normal mode frequencies of the motion: 

√ 
normal mode frequencies: ω0 and 3ω0. (12) 

From Eq.(10) it should be clear that the normal mode (1, 1) oscillates with a frequency ω0 and the normal √
mode (1, −1) oscillates with a frequency 3ω0. 

The vectors in Eq.(11) represent the building blocks of the coupled oscillator motion. We can understand 
what they physically represent by considering what Eq.(10) predicts about the motion in Fig. ??. If we set 
A− to zero in Eq.(10), we find that x1(t) = x2(t) meaning that in Fig. ?? the two masses always move in the 
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same direction with the same displacement while keeping the spring between them unstretched (See Fig. 
3a). Such motion occurs with frequency ω0. Alternatively if we set A+ = 0 in Eq.(10), we find that x1 = −x2 

meaning that in Fig. ?? the two masses always move in opposite directions with the same magnitude of √
displacement (See Fig. 3b). Such motion occurs with frequency 3ω0. 

Since the general solution Eq.(10) consist of a linear combination of this x1 = x2 and x1 = −x2 motion, all 
the various possible motions of Fig. ?? can be reduced to a linear combination of x1 and x2 moving together 
and x1 and x2 moving with opposite displacements. 

3 Two coupled oscillators - redux 

For the simplest system imaginable (i.e., the one in Fig. ??) we achieved our goal. We found the dynamical 
equations governing the system and solved them to find the most general description of motion. Along the 
way we introduced the concepts of normal modes and normal frequencies to help us better understand the 
resulting motion. 

But all of this was largely due to luck (or fortuitous insight). We started with Eq.(1) and Eq.(2), and we 
were fortunate enough to find a trick which allowed us to reduce our coupled system of equations to two 
independent equations which could then be easily solved. But what would we do if we couldn’t immediately 
see the best way to perform this reduction? For example, if all the spring constants and masses in Fig. ?? 
were di�erent, how then would we solve the equation of motion? 

It turns out there is a more reliable method of solution than the one we stumbled upon. The method 
begins by writing Eq.(1) as a matrix equation. First, dividing through by m and grouping terms associated 
with the same position variable, we have 

ẍ 1 = −2ω0
2 x1 + ω0

2 x1, (13) 
ẍ 2 = ω0

2 x1 − 2ω0
2 x2. (14) 

Given the rules of matrix multiplication, we can write this system as � � � �� � 
ẍ 1 −2ω2 ω2 x10 0= . (15)
ẍ 2 ω2 −2ω2 x20 0 

To solve Eq.(15) we employ that tried and true method of solving linear di�erential equations: Guess and 
check! Given our vector expression for the coordinates, and our prior knowledge of normal mode solutions, 
we guess the solution � � � � 

x1 A αt 

x2 
= 

B 
e , (16) 

where A, B, and α are undetermined constants. Now, our goal is to find the A, B, and α which make Eq.(16) 
a valid solution of Eq.(15). Inserting Eq.(16) into Eq.(15) we find, � 

α2 A 
B 

� � 
αt e = 

−2ω2 
0 

ω2 
0 

ω2 
0 

−2ω2 
0 

� � 
A 
B 

� 
αt e (17) 

or, �� � � �� � 
−2ω2 ω2 1 00 00 = − α2 

ω2 −2ω2 0 10 0� � � � 
−2ω2 

0 − α2 ω2 A0= . 
ω2 −2ω2 

0 − α2 B0 

A 
B 

� 

(18) 

Now, our reframed goal is to find the A, B, and α which satisfy Eq.(18). Automatically we already know one 
(albeit trivial) solution. Even though it defines a completely stationary system, setting A = B = 0 certainly 
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satisfies Eq.(18). Indeed this solution is what we would find if we were to invert the matrix in Eq.(18). That 
is we could define � � 

−2ω2 ω2 
ˆ 0 − α2

0Ω − α2I ≡ , (19)
ω2 −2ω0

2 − α2 
0 

where I is the 2 × 2 identity matrix, and then, presuming this matrix was invertible, we could then find the 
solution to Eq.(18) through �� �� 

Aˆ0 = Ω − α2I 
B �� �� � �−1 ��−1 Aˆ ˆ ˆΩ − α2I 0 = Ω − α2I Ω − α2I 

B � � 

0 = 
A

. (20)
B 

Thus, whenever we can invert Eq.(19), we will always find the trivial solution Eq.(20). We do not want this. 
Rather we want non-trivial solutions where A and/or B are nonzero. To find these solutions we will have 
to assume that we cannot invert Eq.(19) and hence cannot perform the calculation leading to Eq.(20). From 
linear algebra, to say that we cannot invert a matrix is to say that the inverse does not exist. For a matrix Â 

the inverse is defined schematically as � � 
Â−1 =

1 × ”some other matrix related to Â” , (21)
det Â 

where det Â is the determinant of Â. The ”some other matrix...” part is not important for us. What is impor-
tant is the 1/det Â part. Given that we cannot divide a matrix by 0, the inverse Â−1 does not exist whenever 
det Â does not exist. 

Existence of an Inverse: The inverse of the matrix Â exists if and only if the determinant 
of Â is non-zero. 

Therefore, in order to find the nontrivial solutions to Eq.(18), we need to consider the case where Eq.(19) 
is not invertible, namely the case where its determinant is zero. Computing the determinant of Eq.(19) and 
setting the result to zero, we find 

−2ω0
2 − α2 ω2 

00 = = α4 + 4ω0
2α2 + 3ω4 (22)0 

0ω
2 −2ω0

2 − α2 

Eq.(22) can be solved for α2 (and in turn α) through the quadratic equation. Doing so yields q 
α2 = −2ω0

2 ± 
1 

16ω4 − 12ω4 = −2ω0
2 ± ω0

2 . (23)± 0 02 

We thus find the solutions ( ( √ 
α+ = iω0 α− = i 3ω0 

α2 = −ω2 → and α2 = −3ω2 → √ (24)+ 0 − 0α+ = −iω0 α− = −i 3ω0. 

Now, it is time to find the coeÿcients A and B. Given the α2 values we found above, we determined 
based on a ”non-invertible” condition, we should expect to find non-trivial (i.e., nonzero) values for A and 
B. We will determine these values from Eq.(24) and Eq.(18). Given the α2 solutions, Eq.(18) states that the + 
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associated coeÿcients A+ and B+ must satisfy � �� � � �� � 
−2ω0

2 − α2 ω2 A+ −ω2 ω2 
0 = + 0 = 0 0 A+ . (25)

ω2
0 − α2 ω2 

0 −2ω2
+ B+ 0 −ω0

2 B+ 

The most general (A+, B+) vector which satisfies this equation is of the form � � � � 
A+ = A+ 

1 
, (26)

B+ 1 

where A+ is an arbitrary constant. This (A, B) solution is associated with both α+ = iω0 and α+ = −iω0. 
Similarly, given the the α2 solutions, Eq.(18) states that the associated coeÿcients A− and B− must satisfy − � �� � 

ω2 ω2 
0 0 A−0 = . (27) 

ω2 ω2 
0 0 B− 

The most general (A−, B−) vector which satisfies this equation is of the form � � � � 
A− = A− 

1 
, (28)

B− −1 

√
where A− is an arbitrary constant. This (A, B) solution is associated with both α− = i 3ω0 and α− = √ 
−i 3ω0. 

At this point we are basically done: Our goal was to find the A, B, and α which allowed Eq.(16) to be a 
solution of Eq.(15). We found a set of four such values: � � � � � � � � √ √1 1 1 1iω0t −iω0 t 3ω0t −iA+ e , B+ e , A− e i , and B− e 3ω0t , (29)

1 1 −1 −1 

where A± and B± are our four arbitrary constants set by initial conditions. Given what we know about 
solutions to linear di�erential equations, it should be clear that the most general solution to Eq.(15) is a 
linear combination of the solutions in Eq.(29). That is the most general solution is � � � � � � 

x1(t) 1 iω0t 1 −iω0t = A+ e + B+ e 
x2(t) 1 1 � � � �√ √ 

i 3ω0t −i 3ω0t+ A− 
1 

e + B− 
1 

e , (30)−1 −1 

Given that x1 and x2 must be real, we have to take the real part of Eq.(30) in order to find the physical 
solution. In finding this solution we take A± and B± to be complex, and we use the identity � �

Re Aeiθ + Be−iθ = Re[A + B] cos θ − Im[A − B] sin θ = C cos(θ − φ), (31) 

where C and φ are real quantities defined in terms of Re[A + B] and Im[A − B]. Taking the real part of 
Eq.(30) and using Eq.(31), we thus find the physical part of the general solution is � � � � � � √x1(t) 1 1 

= C+ cos(ω0t − φ+) + C− cos( 3ω0t − φ−) (32)
x2(t) 1 −1 

which is identical to the solution Eq.(10) we found previously. 

6 



4 N = 3 OSCILLATORS M. WILLIAMS 

3.1 Discussion: Eigenvalues and Eigenvectors 

Now I can probably guess what you’re thinking: We went through all that mathematics to derive a result 
we obtained much more simply before. What was the point of all this? 

The first point has to do with generality. In the method we initially used to derive Eq.(10), we took 
advantage of the simplicity of our system to to find a way to separate the equations of motion into two 
simpler forms. In more complex system with less symmetry amongst the defining parameters, it would be 
more diÿcult to find such convenient linear combinations. In fact the algorithmic way to find combinations 
analogous to Eq.(5) in more complex systems is to do precisely what we did in the second method. 

The second point is pedagogical. By solving Eq.(15) for the solution Eq.(16) we tacitly made use of an 
important construct in linear algebra. Dropping the exponential factor on either side of Eq.(17) and defining 
the matrix as Ω̂ and the vector (A, B) as ~x0, we have the equation 

Ω̂ ~x0 = α2 ~x0. (33) 

In Eq.(33), we have a matrix Ω̂ multiplying a vector ~x0 and producing a scalar α2 multiplying the vector. 
Whenever we have a situation where matrices, vectors, and scalars are related as they are in Eq.(33), we 
term the scalar α2 the eigenvalue of the matrix Ω̂ and the vector ~x0 the eigenvector of the matrix. In solving 
Eq.(16) for (A, B) and α we were in essence solving the eigenvalue problem of Ω̂ . The method we used to 
find this solution (namely, setting det(Ω̂ − α2I) to zero and solving for α2 and ~x0 which satisfied Eq.(33)) is 
the standard one used to find the eigenvalues and eigenvectors of a matrix. If you continue to study science 
or engineering, you will almost certainly see this procedure again, so it was worth introducing now. 

Normal Modes and Eigenvectors: We should note that the normal modes we previously found 
(Eq.(11)) are the eigenvectors of the matrix Ω̂ and the normal mode frequencies (Eq.(12)) are the 
imaginary parts of the square roots of the eigenvalues. This is general for any coupled oscillator 
system we consider. The eigenvalues and eigenvectors of the interaction matrix (i.e., whatever matrix 
that takes the place of Ω̂ in this problem) are related to the normal mode frequencies and normal 
modes, respectively, of the oscillating system: Given the equation of motion 

¨ ~x(t) = Ω̂ ~x(t), (34) 

were ~x = (x1, x2, . . . , xN ) and Ω̂ is an N × N matrix, we have the eigenvalue-eigenvector equation 

Ω̂ ~x0 = α2 ~x0 (35) 

where possible values of ~x0 define the normal modes and possible values of Im(α) define the normal 
mode frequencies of the system. 

4 N = 3 oscillators 

Having considered a system of two coupled masses, any slightly more complex generalizations might in-
volve longer calculations but would use the same methods we have already developed. Take the system of 
three oscillating masses depicted above. Expressing the equations of motion as a matrix equation, we would 
find ⎛ ⎞ ⎛ ⎞⎛ ⎞ 

ẍ 1 −2ω2 ω2 0 x10 0⎝ ¨ ⎠ = ⎝ ω2 −2ω2 ω2 ⎠⎝ ⎠ (36)x2 x20 0 0 
ẍ 3 0 ω0

2 −2ω0
2 x3 
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Figure 4: Three oscillators coupled in series. Figure from [1] 
See image credit at the bottom of Page 9. 

where ω2 = k/m. The key to finding the general solution to this equation of motion would be to first find 0 
the eigenvectors and eigenvalues of the 3 × 3 matrix. In analogy to the system of two coupled oscillators 
considered in the previous section, we would find three normal modes and three normal mode frequencies 
making up the most general solution. The solution would look something like ⎛ ⎞ 

x1(t)⎝ x2(t) ⎠ = C1 ~v1 cos(ω1t − φ1) + C2 ~v2 cos(ω2t − φ2) + C3 ~v3 cos(ω3t − φ3), (37) 
x3(t) 

where ω1, ω2, ω3 and ~v1, ~v2, and ~v3 are the normal mode frequencies and normal modes, respectively, of Fig. 
4. Finding these quantities would require us to compute a determinant similar to Eq.(22) and then solve for 
the general coeÿcients of the vector for each eigenvalue we find. 

5 N →∞ oscillators 

All of this is straight forward enough for the system in Fig. 4, but what would we do if we had ten oscillators, 
or twenty? For such large N systems, we could no longer work analytically and we would instead need 
computational algorithms to find the normal mode and normal mode frequencies. 

But interestingly, if we take N to be even larger than 10 or 20, in particular if we take N → ∞ the 
translational symmetry of the resulting problem would allow us to return to analytic methods. Consider 
the figure below consisting of N identical masses coupled through identical springs. 

Figure 5: N oscillators coupled in series. What happens to the equation of motion for N →∞? Figure from 
[1] See image credit at the bottom of Page 9. 

The equation of motion for the mass j within this coupled series would be 

mẍ j = k(xj+1 − xj ) − k(xj − xj−1) [For 1 ≤ j ≤ N ] (38) 

where xN+1 = x−1 = 0. How could we solve this equation? We could try to create a large N × N matrix 
analogous to that in Eq.(36), but there is in fact a simpler method. The simpler method makes use of our 
old friend from calculus: the continuum limit. To take Eq.(38) to the continuum limit, we first define a 
rest-length lattice spacing of size a between the oscillators in Fig. 5. We then take Na to define the fixed 
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length L, 
Na = L (39) 

and consider the limit of Eq.(38) as N → ∞. This limit allows us to promote the index-valued positions 
xj (t) to functions x(s, t). With this promotion Eq.(38) becomes 

mẍ(s) = k (x(s + a) − x(s)) − k (x(s) − x(s − a)) . (40) 

We then define a fixed mass density λ as 
m 

λ = , (41) 
a 

and a tension force E as 
E = ka. (42) 

We impose that both λ and E are independent of a and remain the same regardless of how small our lattice 
spacing becomes. This imposition would in turn require m and k to have some dependence on a. This 
stipulation allows us to complete our continuum limit. Dividing both sides of Eq.(40) by a and taking a → 0 
we obtain 

m k 
lim ẍ(s) = lim (x(s + a) − x(s)) − k (x(s) − x(s − a)) 
a→0 a a→0 a 

1 
λẍ(s) = E lim [(x(s + a) − x(s)) − (x(s) − x(s − a))] 

a2� � 
1 (x(s + a) − x(s)) (x(s) − x(s − a)) 

= E lim − 
a a a 

= Ex00(s), (43) 

where ()̇ refers to a time derivative and ()0 refers to an s derivative. Now, the function x(s) is actually also 
a function of time, so it proves more appropriate to write this variable dependence and the corresponding 
derivatives explicitly. Doing so we find 

∂2 ∂2 

λ x(s, t) = E x(s, t), (44)
∂t2 ∂s2 

the dynamical equation governing Fig. 5 when N → ∞. In most contexts, we simply call Eq.(44) the wave 
equation. 
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