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Lecture 07: Wave Equation and Standing Waves 

In these notes we derive the wave equation for a string by considering the vertical displacement of a chain of 
coupled oscillators. In finding the general solution of the derived wave equation, we introduce the Fourier 
series and use the Fourier representation of a bounded string to derive a simple formula for the string’s 
energy. 

1 N →∞ and beyond 
We previously motivated our discussion of coupled oscillators by arguing that oscillators rarely exist alone 
but are often connected to other oscillators. Our real-world examples were the oscillating degrees of free-
dom1 in a table or in a bed, but to be faithful to these examples we would need to go well beyond the two 
and three particle systems we considered in the previous notes. Specifically, such systems contain a number 
of particles on the order of ∼ 1026 (Avogadro’s number), and thus to more accurately describe the dynamics 
of such systems we need to learn how to study coupled oscillator systems where N � 1. 
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Figure 1: N oscillators coupled in series. What happens to the equation of motion for N →∞? Figure from 
[1] 

Practically speaking, the dynamics of a system with a million particles is quite similar to the dynamics 
of a system with a billion particles and so on. So we find that taking N � 1 is tantamount to taking N →∞. 
Such N → ∞ systems have an exceedingly large number of degrees of freedom and our task in this lesson 
is to find some way to model such coupled oscillator systems. 

Thus our framing question is 

Framing Question 
What are the dynamics of coupled oscillator systems where the number of oscillators N goes to 

infinity? 

We will find that the N → ∞ limit of a coupled oscillator system is governed by a new dynamical 
equation which requires a new set of methods and techniques for analysis. This example represents the 
common motif of emergence in physics systems: considering a system with a large number of degrees of 
freedom often results in new properties not present with only a single degree of freedom. 

2 Wave Equation for Transverse Oscillations 
At the end of Lecture notes 06, we considered the system Fig. 1 in the N →∞ limit. There we found that if 
we changed variables and redefined constants in this limit, all the Newton’s second law equations for all the 

1Recall that the degrees of freedom are the positions of the particles in the system 
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2 WAVE EQUATION FOR TRANSVERSE OSCILLATIONS M. WILLIAMS 

Figure 2: Transverse coupled oscillations: Each circle represents a particle of mass m and the springs are 
Hookean and have spring constant k. The rest length (not shown) of the spring is ̀  R, and the masses are a 
horizontal distance a apart. The masses can only move in the vertical direction. 

masses in Fig. 1 could be collectively reduced to a single second-order partial di˙erential equation. In this 
section, we will derive this very same equation for a new system to demonstrate the equation’s generality. 

We begin with the situation shown in Fig. 2. We have a system of N masses arranged horizontally but 
constrained to move only vertically. The masses are separated by a horizontal distance a and are coupled to 
their neighbors by a spring of spring constant k and rest length ̀  R. This system can be taken to represent a 
string on a very microscopic level. Our goal is to consider the system for an N →∞ number of masses and 
to determine the associated dynamical equation. 

We begin by determining the forces acting on the jth mass. For the jth mass the magnitude of the 
force exerted by the j + 1 neighbor should be equal to (by Hooke’s law) k times the quantity defining the 
distance between the oscillators minus the rest length. Given that the distance between the two oscillatorsp
is Δy2 + a2 where Δy is the di˙erence in their y coordinates, we find that the magnitude of this force is �q � 

~|Fj+1 on j | = k (yj+1 − yj )2 + a2 − ` R . (1) 

Since the masses can only move in the vertical direction, only the vertical component (i.e., the sine compo-
nent) of this force is dynamically relevant. By trigonometry, we can show that the sine of the angle between 
the horizontal axis and the spring connecting the j and j + 1 masses is 

yj+1 − yj
sin θj = p . (2)

(yj+1 − yj )2 + a2 

Therefore, the vertical component of the force exerted on j from j + 1 is 

~Fj+1 on j, y = |Fj+1 on j | sin θj�q � 
(yj+1 − yj ) 

= k (yj+1 − yj )2 + a2 − ` R · p (3)
(yj+1 − yj )2 + a2 " # 

` R 1 
= k(yj+1 − yj ) 1 − p , (4) 

a 1 + (yj+1 − yj )2/a2 

where we factored out an a in the square root in the final line. Now, we will take the "strong coupling" 
approximation where the rest length ̀  R of the spring is much less than the distance a between the oscillators. 
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Figure 3: Transverse coupled oscillations approximate a string in the large N limit 

Taking ̀  R � a in Eq.(4), we find that the force becomes 

Fj+1 on j, y = k(yj+1 − yj ) (5) 

By a roughly identical argument and with the same approximation, we can show that the vertical component 
of the force on the jth mass due to the j − 1 mass is 

Fj−1 on j, y = −k(yj − yj−1). (6) 

Now, with all the forces acting on the jth mass resolved, we can write the vertical equations of motion. By 
Newton’s 2nd law we have 

mÿ  j = Fj+1 on j, y + Fj−1 on j, y = k(yj+1 − yj ) − k(yj − yj−1). (7) 

From here, we take the continuum limit of our system of N discrete masses. To take this limit we promote 
the yj (t) functions to y(x, t), in which the horizontal position of the jth mass is replaced by the continuous 
variable x. In essence we are taking ja (where a is the spacing between the masses) to x. Eq.(7) then becomes 

mÿ(x, t) = k (y(x + a, t) − y(x, t)) − k (y(x, t) − y(x − a, t)) . (8) 

Next we make m and k implicitly dependent on the lattice spacing a such that as a becomes smaller, m gets 
smaller as well but k gets larger. We can then define a tension T (with units of force) as 

T = lim ka, (9) 
a→0 

and a mass density µ (with units of mass per length) as 

m 
µ = lim . (10) 

a→0 a 

Dividing Eq.(8) by a and taking the limit as a → 0, we then find 

m k 
lim 
a→0 a 

ÿ(x, t) = lim 
a→0 a 

[(y(x + a, t) − y(x, t)) − (y(x, t) − y(x − a, t))] � � 

µ ÿ(x, t) = 
1 

lim ka 
a→0 a 

y(x + a, t) − y(x, t) 
a� 

− 
y(x, t) − y(x − a, t) 

a � 

= lim ka · lim 
1 y(x + a, t) − y(x, t) − 

y(x, t) − y(x − a, t) 
a→0 a→0 a a a 

= T y00(x, t) (11) 

where we used the limit definition of a derivative in the last line and used "primes" to signify derivatives 
with respect to x. Since y(x, t) is a function of two variables, we should write Eq.(11) more explicitly in terms 
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of partial derivatives as 
∂2 T ∂2 

y(x, t) = y(x, t), (12)
∂t2 µ ∂x2 

which is formally known as the one-dimensional wave equation. We note that in taking the N →∞ limit of 
our transversely oscillating coupled system, we have moved from a system of discrete oscillators to a con-
tinuous string. Thus Eq.(12) defines the dynamics of motion for the string shown in Fig. 3. 

Longitudinal versus Transverse waves: At the end of Lecture notes 06, we derived a wave equation 
identical to Eq.(12), but we had begun by trying to describe a rather di˙erent system. Namely, we 
considered the system Fig. 1 (which is quite di˙erent from the system in Fig. 2) in the case of N → ∞, 
and we also found the wave equation. 

Why is this? On one level, the fact that Eq.(12) applies to two di˙erent contexts points to the 
ubiquity of the wave equation in describing spatially propagating oscillations, but the di˙erence 
between the contexts deserves to be highlighted. 

In Fig. 1, we were considering oscillations along an axis coincident with the axis of masses, while 
in Fig. 2 we are considering oscillations along an axis perpendicular to the axis of masses. When 
the wave displacement is in the same direction as its direction of propagation (i.e., the axis defin-
ing the position of the wave amplitude) , we say the wave is a longitudinal wave while when the 
wave displacement is perpendicular to the direction of propagation we say the wave is a transverse 
wave (See Fig. 4). Thus the wave equations derived from the cases in Fig. 1 and Fig. 2 were, respec-
tively, modeling longitudinal and transverse waves. This distinction may seem academic, but it is 
in fact very important in understanding the properties of sound waves (which are longitudinal) and 
electromagnetic waves (which are transverse). 

Figure 4: Longitudinal versus transverse waves. 
Figure courtesy of Catherine Schmidt-Jones from OpenStax CNX. License CC BY. 

2.1 Dimensional Analysis 
In Eq.(12) we have our desired dynamical equation for a coupled oscillator system where the number of 
oscillators N is taken to infinity. In the next section, we will begin seeking solutions to Eq.(12) but before we 
do so we will use dimensional analysis to get a sense of the significance of the parameter ratio in the equation. 
From our definitions of T and µ we know that have units of force and linear mass density, respectively. 
Therefore the units of their ratio is � � 

T N kg · m m m2 

= = × = . (13) 
µ kg/m s2 kg s2 
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3 SOLVING THE WAVE EQUATION M. WILLIAMS 

Thus, we see that T/µ has units of velocity squared. This turns out to not be a coincidence as we will laterp
discover; the quantity T/µ will define the speed of wave propagation along the string. 

3 Solving the Wave Equation 
Now that we have the wave equation Eq.(12), our next task is to try solve it. There are a few ways to solve 
Eq.(12), but the one method which will prove most useful to us is one that you’ve encountered before: sep-
aration of variables. In separation of variables, we begin with the dynamical equation 

∂2 ∂2 
2 y(x, t) = v y(x, t), (14)

∂t2 ∂x2 

where for notational simplicity we incorporated the parameter v defined as s 

v = 
T
. (15) 

µ 

We note that in Eq.(12) the partial derivatives defined with respect to di˙erent variables are on opposite 
sides of the equal sign. From the form of Eq.(14), we can then postulate that the solutions should take the 
form 

y(x, t) = f(t)g(x), (16) 

where f(t) and g(x) are exclusively functions of t and x, respectively. This is the essential step in the sep-
aration of variables procedure. You might think searching for solutions of the form Eq.(16) artificially con-
strains the possible solutions we can find, and this is true2. But it turns out that continuing with this guess 
and eventually employing superposition, we will be able to fully construct the general solution to Eq.(14). 

Inserting Eq.(16) into Eq.(14), we find 

d2f(t) d2g(x) 
g(x) = v 2f(t) (17) 

dt2 dx2 

In order to complete the step of separating variables, we divide both sides by Eq.(16), to obtain 

1 d2f(t) 1 d2g(x)2 = v . (18)
f(t) dt2 g(x) dx2 

Now because f is exclusively a function of t and g is exclusively a function of x, Eq.(18) can schematically 
be written as 

(some function of t) = (some function of x). (19) 

Equating two functions each of which is defined by a variable not found in the other does not make sense, 
unless both functions are zero or, more generally, constants. Thus, in order to move from Eq.(18) towards a 
solution we need to equate both sides of the equality to a constant. Anticipating the desired properties of 
our solution (namely, we want sinusoidal solutions) we will take this constant to be −ω2 where ω is yet to 
be given a physical interpretation. Thus, we have 

1 d2f(t) 1 d2g(x)2 = −ω2 = v (20)
f(t) dt2 g(x) dx2 

2I am cheating a bit in writing Eq.(16) because I know the form the solution to this problem should take and choosing y(x, t) to 
match that form. This is not a necessary choice for solutions to Eq.(14). In the next lecture/lesson we will posit a di˙erent form for 
y(x, t) consistent with the properties we’re considering in a new situation. 
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3 SOLVING THE WAVE EQUATION M. WILLIAMS 

or, the system of equations 

d2f(t) 
= −ω2f(t) (21)

dt2 

d2g(x) 
= −k2 g(x), (22)

dx2 

where, again for notational simplicity, we introduced a new parameter k defined as 

k = 
ω
. (23) 

v 

Given all of the experience we’ve built in this direction, solving Eq.(21) and Eq.(22) should be quite simple 
by now. Writing down their solutions, we find 

f(t) = A cos(ωt) + B sin(ωt) and g(x) = C cos(kx) + D sin(kx), (24) 

where A, B, C, and D are arbitrary constants. ByEq.(16), these results imply that the solution y(x, t) is � �� � 
y(x, t) = A cos(ωt) + B sin(ωt) C cos(kx) + D sin(kx) . (25) 

With Eq.(25), we have apparently managed to solve Eq.(14), but we are not quite done. Unlike the general 
solutions we previously studied, we cannot easily interpret Eq.(25) because it is defined in terms of param-
eters whose physical significance is not yet clear. The most we could say is that Eq.(25) represents a wave 
motion which is oscillating in time and space, but what does ω—seemingly introduced as part of a calcula-
tional trick—actually represent? What does k, which is defined in terms of ω, represent? To answer these 
questions we would need to start from Eq.(25) and introduce an additional constraint which is not specific 
to all solutions to Eq.(14) but is appropriate to the scenario depicted in Fig. 2. 

3.1 Boundary Conditions 

Figure 5: String with fixed end points a distance L apart. The string’s motion obeys Eq.(14) with y at x = 0 
and x = L fixed at zero. 

The solution Eq.(25) is actually too general, and in order to make use of it we need to incorporate con-
straints imposed by our particular system of study. We previously noted that Eq.(14) describes the motion of 
waves on a string, but in these notes we will further specify that we are looking for solutions to this equation 
corresponding to a "bounded string" such as that depicted in Fig. 5. Such a depiction is consistent with our 
original transverse oscillator picture of the string in Fig. 2; we can imagine having a collection of oscillating 
masses spanning a fixed length L, and then taking N → ∞ by reducing the lattice spacing a and inserting 
more and more oscillators into our fixed extent. In this scenario, the masses at the point x = 0 and x = L 
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3 SOLVING THE WAVE EQUATION M. WILLIAMS 

will remain essentially fixed at y = 0 while the intervening oscillators would have unconstrained values of 
y. 

Therefore, in order for Eq.(25) to be a solution we need to impose the boundary conditions 

y(x = 0, t) = 0 and y(x = L, t) = 0. (26) 

Conceptually, boundary conditions are to space what initial conditions are to time. They dictate the value 
of the function when one of its independent values is fixed, and thereby take us from a general solution to 
a more specific solution. Imposing the first boundary condition in Eq.(26) on Eq.(25), we find h i 

y(x = 0, t) = A cos(ωt) + B sin(ωt) C = 0 (27) 

which implies C = 0. Imposing the second boundary condition, gives us h i 
y(x = L, t) = A cos(ωt) + B sin(ωt) D sin(kL) = 0, (28) 

implying that that sin(kL) = 0. Since L is fixed by the setup of the problem, this condition determines the 
value of our previously obscure parameter k. In order for Eq.(28) to be valid we must have 

kL = nπ (29) 

where n can be any positive or negative integer3. In order to have positive wavenumbers, we will only allow 
positive integers. In this sense k, can take on a countably infinite number of values. To denote which k we’re 
talking about it makes sense to attach the subscript n to k and define 

kn = 
nπ where n = 1, 2, . . .. (30)
L 

By Eq.(23), this solution of k also gives us an infinite number of ω values. With the relation kv = ω (where 
v is defined Eq.(15)), we find that the ωn corresponding to the kn in Eq.(30) is 

ωn = 
nπ 

v where n = 1, 2, . . .. (31)
L 

The index n defines particular solutions to the wave equation, and each of these solutions are associated 
with their own coeÿcients A and B in Eq.(25). Thus incorporating these new index-dependent expressions 
for ω, k, and their coeÿcients we have the solution (for a particular n) h i � � 

yn(x, t) = An cos(ωnt) + Bn sin(ωnt) sin 
nπ

x , (32)
L 

where we absorbed the coeÿcient D into a redefinition of A and B. Now, Eq.(32) is just one solution to the 
wave equation satisfying Eq.(26). How would we find the most general solution? Linear combinations. If 
yn(x, t) is one solution to Eq.(14), then the general solution is 

∞X 
y(x, t) = cnyn(x, t) 

n=1 
∞Xh i � nπ � 

= αn cos(ωnt) + βn sin(ωnt) sin x , (33)
L 

n=1 

where we defined αn = cnAn and βn = cnBn. We are at last done. Eq.(33) represents our most general 
solution to Eq.(14) given the boundary conditions Eq.(26). We note that this solution is specific to these 

3We cannot allow n to be 0 because this would lead to the trivial y(x, t) = 0 result. 
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(a) First harmonic (b) Second harmonic (c) Third harmonic 

Figure 6: Plot of harmonics of Eq.(33). The ends of the string are at x = 0 and x = L. We note that higher 
harmonics cross the x axis more often than lower harmonics and have shorter wavelengths (defined in the 
next section) 

boundary conditions and would not be valid if either end of the string had a di˙erent condition. 
As a comment about nomenclature, the functions of position in Eq.(33) are called harmonics as denoted 

by the integer n which defines them. For example, the n = 1 solution is termed the first harmonic; the n = 2 
solution the second harmonic and so on. The first three harmonics are shown in Fig. 6. 

3.1.1 Wavenumber, Dispersion Relation, and Wavelength 

With Eq.(33), we are now in a position to interpret the parameters ω and k we previously introduced. By 
dimensional analysis and ω’s appearance in the general solution, we see that ωn defined in Eq.(31) is the 
angular frequency of our motion. The quantity kn defined in Eq.(30) is termed the wave number. The 
relationship between the wavenumber and the angular frequency is called the dispersion relation, and for 
the classical one-dimensional wave the dispersion relation is given by Eq.(23) or by 

kv = ω. (34) 

The interpretation of the wavenumber most naturally follows from defining a new quantity called the wave-
length which is to space what the period is to time. We know that the angular frequency is related to the 
period T of an oscillation through 

T =
2π (35)
ω 

The period gives the amount of time it takes the oscillating-in-time behavior represented by a solution in 
Eq.(33) to repeat. Similarly, we define the wavelength as 

λ =
2π

, (36)
k 

The wavelength gives the distance one would have to translate a solution in Eq.(33) in order to find the same 
solution. For the bounded string, Eq.(30) tells us the wavelength has the value λn = 2L/n for positive n 
which means higher values of n (and thus, by Eq.(31), higher frequencies) correspond to shorter wavelengths 
of motion. This is exemplified by the harmonics in Fig. 6. 

With the general solution Eq.(33) obtained, we have essentially completed the analysis of the coupled 
oscillator in the N → ∞ limit. But for completeness, we now need to discuss how to apply this solution 
to specific situations. Doing so would require us to develop a general algorithm for computing the αn and 
βn coeÿcients in Eq.(33) and will lead us to develop a mathematical framework which is widely employed 
throughout science and engineering. 
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3.2 Fourier Series and Specific Solutions 
Now that we have our general solution Eq.(33), our next task is to determine a way to find specific solu-
tions. The process is somewhat less straight forward than in the simpler cases of oscillators, so we will work 
through it in depth. 

Say we are given the functions y(x, 0) and ẏ(x, 0) defining the transverse displacement and the time-
derivative of the transverse displacement at t = 0. Then, by Eq.(33), we have 

∞ � �X 
y(x, 0) = αn sin 

nπ 
x (37) 

L 
n=1 X 

ẏ(x, 0) = 
∞ 

βnωn sin 
� nπ 

x 
� 
, (38)

L 
n=1 

In order to find the specific solution, we need to determine αn and βn from Eq.(37) and Eq.(38). But 
we cannot solve for these constants algebraically because they occur within a summation. Instead, in order 
to isolate these coeÿcients we make use of an integration identity. For sinusoidal functions, we have the 
formula (Z L � � � �2 nπ mπ 1 if n = m 

dx sin x sin x = . (39)
L 0 L L 0 if n =6 m 

By defining the quantity δnm (termed the Kronecker delta) as ( 
1 if n = m 

δnm = , (40)
0 if n =6 m 

we can write Eq.(39) more succinctly as Z L � � � �2 nπ mπ 
dx sin x sin x = δnm. (41)

L L L0 

One of the important properties of δnm is that when we sum over n, we pick out terms where n = m. For 
example, if we have a set of constants Fn then Eq.(40) implies (∞ ∞X X 1 if n = m 

Fnδnm = Fn × = Fm. (42)
0 if n =6 m 

n=1 n=1 

Eq.(42) provides the trick we need to isolate the αn and βn coeÿcients . Starting with Eq.(37), we multiply 
both sides by 2 sin(mπx/L)/L and integrate the result from x = 0 to x = L. We then find Z L � � Z L ∞ � � � �X2 mπ nπ mπ 

dx y(x, 0) sin x = dx αn sin x sin x 
L L L L0 0 n=1 

∞ Z L � � � �X2 nπ mπ 
= αn dx sin x sin x , (43)

L L L0=1 

where in the second line we moved the integration into the summation in order to integrate the x dependent 
quantities. Next, using Eq.(41), we have Z L ∞� � X2 

dx y(x, 0) sin 
mπ 

x = αnδnm, (44)
L L0 n=1 
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3 SOLVING THE WAVE EQUATION M. WILLIAMS 

which by Eq.(42) implies Z L � � 
αm =

2 
dx y(x, 0) sin 

mπ
x . (45)

L L0 

By a very similar calculation we can show that βm is given by 

2 
Z L � mπ � 

βm = dx ẏ(x, 0) sin x . (46)
ωmL 0 L 

Fourier Series: Both Eq.(37) and Eq.(38) are formally known as Fourier series. The basic idea behind 
Fourier series is that any function which is defined on a fixed domain can be expressed as a linear 
combination of sines and cosines. When we find the coeÿcients defining this linear combination, 
as in Eq.(45), we are said to have found the "Fourier decomposition" of the bounded function. In 
Eq.(37) we only have sine functions due to our y(0, t) = y(L, t) = 0 boundary conditions, but for 
more general boundary conditions we would have to include cosine functions as well. 

Since a periodic function is simply a function defined within a fixed domain which is repeated 
many times across the real line ( sine and cosine functions defined within 0 ≤ x ≤ 2π are classic 
examples of this), we can use Fourier series to generally represent any periodic function. 

Any periodic function = Linear combination of sines and cosines (47) 

Indeed, in most applications an investigator receives a time-dependent periodic signal which is then 
decomposed into sines and cosines in order to learn something about the frequency properties of the 
signal. If you stay in science or engineering you will become intimately familiar with the techniques 
used to accomplish this. 

With Eq.(45) and Eq.(46) we now have the apparatus to determine a specific solution of Eq.(33). To show 
how this is achieved in practice, we work through a simple example. Say, we have a string which is initially 
at rest (i.e., ẏ(x, 0) = 0) and in the shape given by the function � �� � � �1 πx πx 1 3πx 

y(x, 0) = sin cos + sin . (48)
2 L L 4 L 

By a trigonometric identity we can write this function as � � � � 
1 2πx 1 3πx 

y(x, 0) = sin + sin (49)
4 L 4 L 

and thus by Eq.(45) and Eq.(40), we find 

2 
Z L 1 

� � 
2πx � mπ � 2 

Z L 1 
� � 
3πx � mπ � 

αm = 
L 0 

dx 
4 
sin 

L 
sin 

L 
x + 

L 0 
dx 
4 
sin 

L 
sin 

L 
x 

= 
1 
δ2m + 
4 

1 
δ3m. 
4 

(50) 

Then with βn = 0 (from the fact that ẏ(x, 0) = 0), we find that Eq.(33) states that y(x, t) is � � � � �� 
1 2πx 3πx 

y(x, t) = cos(ω2t) sin + cos(ω3t) sin . (51)
4 L L 
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4 Energy of a Wave 
We have successfully explored some dynamical and kinematical aspects of waves on a finite length of string. 
There are many other questions we can ask about such waves—such as their nonlinear behavior and their 
properties when we impose other types of boundary conditions—but we will satisfy ourselves for now by 
determining the energy of such waves. 

For waves on a finite domain, the total mechanical energy is given by " #Z L � �2 � �2 
µ ∂y T ∂y 

Etot = dx + . (52)
2 ∂t 2 ∂x 0 

We can derive this result by beginning with a discrete (i.e., pre-continuum limit) expression for the energy 
of N coupled oscillators and then taking N →∞ while making the standard replacements of the continuum 
limit. We seek to evaluate Eq.(52) in terms of the αn and βn coeÿcients of Eq.(33). Since the finite string is 
not a dissipative system, the total energy is conserved and is thus the same for all times. So to compute the 
energy, we evaluate Eq.(52) at the convenient time t = 0. For t = 0, we find 

X∞ � �∂y(x, 0) nπ 
= βnωn sin x , (53)

∂t L 
n=1 

evaluating the first term in Eq.(52), we find Z L � �2 ∞ ∞ Z L � � � �X Xµ ∂y µ nπ mπ 
dx = βnωnβmωm dx sin x sin x 
2 ∂t 2 L L0 0n=1 m=1 X∞ ∞Xµ L 

= βnωnβmωm δnm
2 2 

n=1 m=1 
∞XµL 

= β2 ω2 , (54)n n4 
n=1 

where to get the final line, we used Eq.(40) to sum over the m. By a very similar calculation, we can evaluate 
the second term in Eq.(52) at t = 0. We ultimately find that the total energy is given by 

X∞ ∞ 
L 

� 
µ T 

� 
L X µ � � 

Etot = βn 
2 ωn 

2 + αn 
2 k2 = βn 

2 + αn 
2 ω2 , (55)n n2 2 2 2 2 

n=1 n=1 

2where we used T = v µ (from Eq.(15)) and kv = ω in the last equality. Thus, we see that the mechanical 
energy of a wave can be a reduced to a sum over the frequencies squared weighted by the corresponding 
Fourier coeÿcients. 
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