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Lecture 08: Traveling Waves and Boundary Interactions 

In these notes, we solve the wave equation for traveling wave solutions and calculate the transmission and 
reflection coeÿcients characterizing how waves propagate across boundaries. We also discuss waves trav-
eling through media and the energy dissipation that can result. We end with a short discussion of sound 
waves. 

1 Waves en route 

In the previous notes, we successfully derived the wave equation describing how strings underwent both 
longitudinal and transverse1 oscillations. For transverse oscillations defined by a vertical displacement 
y(x, t), we found the wave equation was given by 

∂2 ∂2 
2 y(x, t) = v y(x, t), (1)

∂t2 ∂x2 p
where v (which is T/µ for the string) was a quantity with units of velocity that we had yet to interpret. In 
deriving this equation, we considered the string to reside within a specific domain of space and considered 
the wave motion propagating within this domain. Such an assumption was a convenient starting point in 
analyzing waves, but not all waves exist bounded in fixed domains. For example, light and sound waves 
(both of which are described by wave equations) travel from one place to another interacting with the various 
media they come in contact with. 

With regard to light, we are able to see because light waves are reflected o� various objects in our envi-
ronment and travel to the rod and cone cells in our eyes. During travel, the intensity of the light can decrease 
if it has to propagate through fog, or it might vanish entirely if it was incident on an opaque object. 

With regard to sound, if you can hear cars driving outside or your neighbors sitting rooms away, it is 
because sound waves are traveling through the air, being transmitted through walls and boundaries sepa-
rating and finally hitting your ear drums. Not all of the sound waves emitted by their respective sources 
reach you. Some of these waves are reflected back toward their source and others decay away quickly. 

Figure 1: We can hear and see objects around us due to traveling sound and light waves. How do we 
mathematically describe such waves? 

We would like to be able to describe such propagation. Since we have only so far considered bounded 
1As a useful mnemonic to di�erentiate the two, remember that longitudinal waves travel ”along” the axis of propagation 
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waves, we would need to expand our conception of solutions to the wave equation in order to describe 
traveling waves. To this end, the framing question for this lesson is 

Framing Question 
How do we model the ways waves travel through space and are reflected, transmitted, and 

dispersed through boundaries? 

2 Traveling wave solutions 

Figure 2: The two terms in the general solution Eq.(4) define wave propagation at the same speed but in 
di�erent directions. 

Our goal is to solve Eq.(1) such that our solutions describe traveling waves. Our method of solution will 
parallel our previous solution methods (namely guess and check), but before we make the attempt, let us 
discuss some properties we want these traveling wave solutions to have. 

Unlike our standing wave solutions (which were defined only within the domain [0, L]) we want our 
traveling waves to be defined for a much larger space of x values. For simplicity, we will take this larger 
space of x values to be the entire real line2, i.e., we want our wave to be defined for x = +∞ and x = −∞. 

Also, we will take our waves to be propagating with a finite velocity v. Concerning v, we would want 
our waves to propagate such that if we translate them by a distance Δx in the opposite direction of the 
propagating wave front, then this would be tantamount to not moving at all and instead waiting a time 
Δt = Δx/v for the wave to advance by the position Δx. 

To satisfy this property, our wave y(x, t) must be a function of x − vt. We can see this by noting that if 
we take x → x − Δx (i.e., move by Δx in the opposite direction of +v), then the function f1(x − vt) becomes 

f1(x − Δx − vt) = f1(x − v(t +Δt)) (2) 

which is equivalent to taking t → t +Δt if Δt = Δx/v. Therefore, as our guess for a solution to Eq.(1), we 
take y(x, t) = f1(x − vt) where f1 is any suÿciently well-behaved3 function. Checking this solution we have 

∂2 ∂2 
2 y(x, t) = v y(x, t)

∂t2 ∂x2 

∂2 ∂2 
2f1(x − vt) = v f1(x − vt)

∂t2 ∂x2 

(−v)2f1(x − vt) = v 2f1(x − vt) 

2In reality waves always interact with something (either the source of the wave or its target) at some point during their propagation 
so their domain is actually constricted.

3By ”well-behaved” we mean there are no singularities. 
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f1(x − vt) = f1(x − vt). (3) 

Thus any function which is a function of the quantity x − vt is a solution to the wave equation. Through a 
similar calculation, we can show that the solution y = f2(x + vt) (where f2 is not necessarily equivalent to 
f1) is also a solution to Eq.(1). These two solutions f1(x − vt) and f2(x + vt) represent wave propagation in 
two di�erent directions: The solution f2(x + vt) represents a wave propagating to the left, as opposed to the 
rightward propagation of f1(x − vt). Now, given that the general solution to a linear di�erential equation is 
a linear combination of the possible solutions, we find that the general solution to Eq.(1) is 

y(x, t) = f1(x − vt) + f2(x + vt) (4) 

where the coeÿcients of the linear combination were absorbed into redefinitions of f1 and f2. Although, it 
does not look like it, Eq.(4) includes the standing wave solutions we found through separation of variables 
in the previous notes. Thus, Eq.(4) is indeed the most general (although not always the most useful) form 
of the solutions to Eq.(1). 

2.1 The Connection between Standing and Traveling Waves 
We stated that Eq.(4) is the true general solution for a wave equation. What relationship does it have with 
the previous solution we found for standing waves? 

To understand the relationship, we consider Eq.(4) with two sinusoidal waves of equal phase and am-
plitude but traveling in opposite directions. We define this wave amplitude as u(x, t): 

u(x, t) = 
1
[A cos (k(x − vt)) − A cos (k(x + vt))] , (5)

2 

where k is an as of yet unspecified wave number. Using the sum of angles formula for cosine functions, we 
find that Eq.(5) becomes 

u(x, t) = A sin(kx) sin(ωt), (6) 

where we used the definition of angular frequency to replace kv with ω. From here, er vsn extend this result 
by presuming that instead of having two waves traveling on the string, we have infinitely many waves all of 
the form Eq.(5) except each wave’s wavenumber k depends on an index n = 1, 2, . . . such that kn = nπ/L 
(where L is some length of interest). The coeÿcient A is then reasonably expected to depend on n, so we 
would replace A with An. The total wave displacement would then be 

∞X 
y(x, t) = un(x, t) 

n=1 
∞X An 

= [cos (kn(x − vt)) − cos (kn(x + vt))]
2 

n=1 
∞X 

= A sin(knx) sin(ωnt), (7) 
n=1 

which is the solution we found for the waves on a string bounded within x = 0 and x = L. Eq.(7) is 
somewhat less general than the Fourier series solution found before in that it satisfies y(x, 0) = 0, and thus 
an initial condition has (implicitly) already been imposed. To find the more general solution, we would have 
needed to begin with a more general combination of sines and cosines in Eq.(5). In either case, we see that 
standing waves can be represented by linear combinations of traveling waves moving in opposite directions. 
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2.2 Fourier Integrals and Periodic Motion 
Given that our focus is on periodic motion, it is natural to first explore sinusoidal solutions in Eq.(4). So we 
will take our function f1 and f2 to be a linear combination of sinusoids: 

Thus the solution Eq.(4) becomes 

y(x, t) = A cos [k(x − vt)] + B sin [k(x − vt)] + C cos [k(x + vt)] + D sin [k(x + vt)] (8) 

where A, B, C, and D are real quantities. For the purposes of calculation, it will prove easier to deal with a 
more general form of these sinusoidal solutions. We define the complex variable z(x, t) such that y(x, t) is 
the real part of z(x, t): 

y(x, t) = Re [z(x, t)], (9) 

We will take z(x, t) to satisfy the same wave equation as y(x, t), 

∂2 ∂2 
2 z(x, t) = v z(x, t), (10)

∂t2 ∂x2 

with the same form of the general solution 

ez(x, t) = f1(x − vt) + fe 
2(x + vt) (11) 

The fact that z(x, t) is complex allows us to consider sinusoidal solutions written as complex exponentials. 
Namely, the complex analog of Eq.(8) is 

ik(x−vt) −ik(x−vt) ik(x+vt) −ik(x+vt)z(x, t) = A+e + B+e + A−e + B−e , (12) 

iku −iku where A± and B± are complex quantities. We include both e and e type of functions in Eq.(12) 
because complex exponentials with opposite arguments are independent of one another. We can obtain 
Eq.(8) by applying Eq.(9) and taking Re[A+] = A, Im[A+] = −B, and so on. The way we will use Eq.(12), 
is that we will take its real part before we physically interpret any result computed from it. Recalling our 
previous nomenclature, for the forward moving wave solution |A+| is the amplitude of the wave, k is the 
wave number, and kv = ω is the frequency. 

In the previous lesson, we noted that solutions to the wave equation defined by a single wave number 
k only represent one solution to the wave equation. For example, we found that one solution to the wave 
equation in a bounded domain was 

An sin (knvt) sin (knx) . (13) 

In order to find the general solution, we needed to sum this solution over all possible values of kn. Given 
that each solution is associated with a specific coeÿcient, the general solution was then 

∞X 
y(x, t) = An sin (knvt) sin (knx) (14) 

n=1 

Similarly, to find the most general form of Eq.(12) we need to sum over all possible values of k. Here, k is a 
continuous (rather than discrete) variable so this summation will take the form of an integral. Moreover, the 
continuous analog of the An in Eq.(14) is A+(k) and A−(k). Thus, the most general form of the sinusoidal 
solution Eq.(12) is Z ∞ h i 

ik(x−vt) ik(x+vt)z(x, t) = dk A+(k)e + A−(k)e , (15) 
−∞ 

We do not need to include the B coeÿcients from Eq.(12); since our integral is running from −∞ to +∞, the 
e−ik(x−vt) and e−ik(x+vt) solutions are automatically included in the negative domain of k. In the subsequent 
analysis, we will mostly be considering solutions of the form Eq.(11). However, Eq.(15) is important because 
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it is related to field of mathematics called Fourier analysis which is built around the following theorem. 

Fourier’s Theorem: The two forms of the general solution to Eq.(10) (i.e., Eq.(11) and Eq.(15)) are 
actually equivalent. By a mathematical result called Fourier’s Theorem, a general function f(x) can 
be represented as 

f(x) = 
Z ∞ 

−∞ 
dk φ(k)e ikx , (16) 

where the function φ(k) is in turn given by 

φ(k) = 
1 
2π 

Z ∞ 

−∞ 
dx f(x)e −ikx . (17) 

Using Fourier’s theorem we can express the arbitrary functions ef1 and ef2 used in Eq.(11) as 

f̃1(s) = 
Z ∞ 

−∞ 
dk A+(k)e iks and f̃2(s) = 

Z ∞ 

−∞ 
dk A+(k)e iks , (18) 

where A+ and A− are defined by equations similar to Eq.(17). With Eq.(16), we thus find 

z(x, t) = ef1(x − vt) + ef2(x + vt) = 
Z ∞ 

−∞ 
dk 

h 
A+(k)e ik(x−vt) + A−(k)e ik(x+vt) 

i 
, (19) 

which establishes the equivalence between Eq.(11) and Eq.(15). 

3 Waves changing media 
With Eq.(15), we have at last found a general mathematical description of waves traveling in free space, 
but as mentioned in the introduction, waves rarely travel unimpeded. Rather, waves often interact with 
their surrounding by changing media or reflecting o� of surfaces. For example, mirrors work by reflecting 
light directly back at its source, and we can see through to the bottom of pools because light is propagating 
from the bottom of the pool through the water and then through the air to our eyes. Whenever the medium 
through which a wave is propagating changes, its properties change. In this section, we study these changes 
using a simple model of a propagating string. 

3.1 Reflection and Transmission 

Figure 3: Two strings of di�erent mass densities joined at x = 0. Figure from [1] 

© AIP Publishing LLC. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
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For the string system that we have been considering the ”medium” through which the wave is propagat-
ing is the string itself. The defining quality of the string which defines the properties of propagation is its 
mass density µ. Thus to study how the properties of waves change as they cross media, we have to consider 
how waves change as they transition between strings with di�erent mass densities4. 

We begin with the system shown in Fig. 3 where a string of mass density µ1 for x < 0 is connected at 
the point x = 0 to a string of mass density µ2 for x > 0. We assume that for all time, we have a continuos 
wave f0(x − vt) coming in from the left (and we know it is coming in from the left because f0 is a function 
of x − vt and not x + vt). We want to know what happens to the wave after it reaches the origin. 

We presume two things can happen: part of the wave will be transmitted to the string of mass density µ2 

and part of the wave will be reflected back at its source. Namely, if we were to write the equation representing 
the total wave for x < 0 and x > 0 we would have ( 

f0(x − v1t) + fR(x + v1t) for x < 0 
y(x, t) = (20)

fT (x − v2t) for x > 0 

where R stands for the reflected wave and T stands for transmitted wave. We use di�erent velocities for p 
x < 0 and x > 0 because the velocity of a wave on a string is defined by v = T/µ and the sections of the 
string on either side of x = 0 have di�erent densities. We note that the transmitted wave is traveling to the 
right because it is a function of x − vt, but the reflected wave is traveling to the left because it is a function 
of x + vt. 

3.2 Continuity and Zero Net-Transverse Force 
We will determine a relationship between f0, fR, and fT by using physical properties of the string. First, 
the string is continuous, so the total wave amplitude at x = 0 must be the same on both sides of the point 
connecting the two parts of the string. This means we must have 

y(0+, t) = y(0−, t), [Continuity condition] (21) 

where 0+ defines x = 0 found by approaching the point from the right and 0− defines x = 0 found by 
approaching the point from the left. In terms of our general solution for , this continuity condition becomes 

f0(−v1t) + fR(v1t) = fT (−v2t). (22) 

Next, any point on the string is essentially massless, so the total force exerted on that point must be zero. 
This must be true of the point joining the x < 0 and x > 0 regions of the string as well. For the string with 
transverse oscillations, the force arises from the tension T and the slope of the string. We can define this 
slope by the angle θ the string makes with the horizontal. We will assume θ is small which is true for low 
amplitude waves. When a section of string is at an angle θ with the horizontal, the force which is being 
exerted on it to produce this angle has horizontal and vertical components. For a string of tension T , the 
horizontal component of the force at the point x = 0 coming from left part of the string is 

Fx(x = 0) = −T cos θ ' −T. (23) 

We use a negative sign because the tension from the left part of the string is pulling the point at the origin 
toward the x < 0 direction. Similarly, the vertical component of the force coming from the left part of the 
string is � � 

∂y 
Fy(x = 0) = −T sin θ ' Tθ ' T tan θ = −T , (24)

∂x 

4More generally, we could also consider di�erent tensions, but for simplicity we will take the tensions to be equal on both sides of 
the string. 
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where we used the small-angle approximation of sin θ and tan θ. Here, the negative sign arises because if 
the slope of the string at the origin is positive then the left part of the string must be pulling down on the 
point at the origin. The requirement that the net-force on the part of the string at x = 0 is zero, amounts 
to requiring that the sum of F for x < 0 and F for x > 0 at x = 0 is zero. Given Eq.(23), this condition is 
automatically satisfied for the horizontal forces acting within the string. Namely we have 

Fnet,x(x = 0) = lim Fx + lim Fx ' −T + T = 0. (25) 
x→0+ x→0− 

where we use the notation x → 0+ or x → 0− to signify approaching x = 0 from the right or left, respectively. 
Conversely, we also require that the net-force in the y-direction is zero, and so we have � � � � 

∂y ∂y 
Fnet,y (x = 0) = lim Fy + lim Fy ' − lim T + lim T = 0. (26) 

x→0+ x→0− x→0+ ∂x x→0− ∂x 

Therefore, for our string of constant tension, this condition of zero net-force in turn implies � � � � 
∂y ∂y 

T = T . [Zero net-transverse force condition] (27) 
∂x ∂x 0+ 0− 

Given that the string tension is the same on both sides of the boundary, written in terms of the general 
solution Eq.(3.1), this result becomes 

f0 
0 (−v1t) + fR 

0 (v1t) = fT 
0 (−v2t) (28) 

In summary, the two conditions that the string displacement at an interface (placed at x = 0) must satisfy 
are 

1. Continuity: The string must be continuous across the interface (Eq.(21)). This means the displacement 
y(x, t) when approaching the interface from the left must be the same as that when approaching the 
interface from the right. 

2. Zero net-transverse force: The net-vertical force at the interface must be zero (Eq.(27)). This is to 
ensure there is no net-force applied to the infinitesimal mass at the interface; such a net force would 
yield an infinite acceleration. 

3.3 Reflection and Transmission Coeÿcients 
Eq.(22) and Eq.(28) are convenient starting points for deriving properties relating the incident wavefront f0 

to the reflected and transmitted wavefronts fR and fT . We can go even further by positing a standard form 
for these waves. For simplicity, we will return to the complex exponential form of the general sinusoidal 
solution 5. Our traveling wave solutions are then 

ik1u+ +B0e −ik1u+ ik1 u− +BRe −ik1u− ik2 u+ +AT e −ik2u+fe 
0(u+) = A0e , fe 

R(u−) = ARe , fe 
T (u+) = AT e , 

(29) 
where u+ = x − vt and u− = x + vt and where we use k1 and k2 to refer to the wave numbers of the µ1 string 
and µ2 string, respectively. Given the complex exponential analog of Eq.(29), we find that the total wave for 
x < 0 is 

ik1(x−v1t) −ik1 (x−v1t) ik1(x+v1t) ik1(x+v1t)z(x, t) = A0e + B0e + ARe + BRe [For x < 0] (30) 
5To be more precise we should have performed this analysis with the function z(x, t), but this measure of sloppiness does not a�ect 

the final results. If we find any complex quantities in a final result, we will simply take the real part and assume we implemented the 
procedure correctly from the beginning. 
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and the total wave for x > 0 is 

ik2(x+v2t) ik2(x+v2t)z(x, t) = AT e + BT e [For x > 0]. (31) 

We note that because string 1 and 2 di�er in their density, the parameters in the system which are dependent 
on length scale are di�erent for the two sections of the strings. Namely, any quantity which includes units 
of distance is di�erent when it is defined on the leftside versus on the rightside of Fig. 3. However, any 
quantity with out any units of distance is the same across the string. This means that although k and v (with 
units of m−1 and m/s, respectively) are not the same across the two sections of the string, ω = kv (with 
units of rad/sec) is the same. Therefore, Eq.(30) and Eq.(31) becomes 

i(k1x−ωt) −i(k1x−ωt) i(k1x+ωt) −i(k1x+ωt)z(x, t) = A0e + B0e + ARe + BRe [For x < 0] (32) 

or 
i(k2x−ωt) −i(k2x−ωt)z(x, t) = AT e + BT e [For x > 0]. (33) 

Now, imposing Eq.(21) on these forms of z(x, t), we find 

−iωt iωt −iωt iωt iωt −iωt AT e + BT e = A0e + B0e + ARe + BRe 
iωt = (A0 + BR)e −iωt + (B0 + AR)e , (34) 

which given the linear independence of eiωt and e−iωt, leads to the two equations 

AT = A0 + BR, BT = B0 + AR. (35) 

Similarly, imposing Eq.(27) on these forms, gives us 

−iωt − ik2BT e −iωt −iωt − ik1B0e iωt iωt − ik1BRe −iωt ik2AT e = ik1A0e + ik1ARe 
iωt 0 = (k1A0 − k1BR)e iωt + (−k1B0 + k1AR)e , (36) 

which then yields the other two equations 

k2AT = k1(A0 − BR), −k2BT = k1(−B0 + AR). (37) 

Together Eq.(35) and Eq.(37) give four equations which can be broken up into two systems of two equations. 
The unknowns in the equations are the amplitudes of the reflected and transmitted waves. Solving these 
systems is a matter of basic algebra and their solutions mirror one another. So we will write the solutions 
for a single system and ignore the other under the assumption that it can be easily found through a similar 
procedure. Presuming we know the initial wave amplitude A0, the amplitude of the the reflected wave and 
the transmitted wave are (from solving the system given by the left equations in Eq.(35) and Eq.(37)) 

2k1 k1 − k2
AT = A0, BR = A0. (38)

k1 + k2 k1 + k2 

It will prove more useful to write this result in terms of the mass density µ of each string. Dividing Eq.(38) 
by ω (which is the same on both sides of the string), and using k/ω = v−1, we find 

−1 −1 −1 v v − v1 1 2AT = A0, BR = A0, (39)−1 −1 −1 −1 v + v v + v1 2 1 2 
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Figure 4: µ2 = µ1 Figure 5: µ2 →∞ Figure 6: µ2 → 0 

p
and then using the definition of velocity as v = T/µ (with µ di�erent on both sides of the string, but T 
the same by imposition) we find 

√ √ √ 
2 µ1 µ1 − µ2 

AT = √ √ A0, BR = √ √ A0. (40) 
µ1 + µ2 µ1 + µ2 

These are the final expressions relating the initial wave amplitude A0 to the reflected amplitude BR and the 
transmitted amplitude AT . We would find identical expressions relating B0, AR and BT if we solved the 
system given by the right equations in Eq.(35) and Eq.(37). Most often, we define the coeÿcients of Eq.(40) 
as reflection and transmission coeÿcients 

√ √ √ 
2 µ1 µ1 − µ2 

T = √ √ , R = √ √ (41) 
µ1 + µ2 µ1 + µ2 

Because these coeÿcients are real, they apply equally well when defining the relationships between the 
initial, reflected, or transmitted amplitude for the real traveling waves of the form Eq.(8). What properties do 
these equations lend to real traveling waves? We can best understand this through limiting cases concerning 
how the mass density of the string changes across the origin. 

– µ2 = µ1 (Uniform String): If we have a uniform string across the origin, then we expect no wave to 
be reflected back and that all of the initial wave is transmitted from the left to the right. With Eq.(40) 
we find exactly this, for with µ1 = µ2, Eq.(41) gives us T = 1 and R = 0, indicating no wave is reflected 
and the transmission amplitude matches the initial amplitude. (Fig. 4) 

– µ2 → ∞ (Infinitely heavy on right): If we have an infinitely heavy string on the right, then this is 
tantamount to having the string fixed at x = 0. Eq.(41) then tells us that no wave is transmitted and 
the wave which is reflected has negative the amplitude of the initial wave. (Fig. 5) 
More generally, we see that whenever µ2 > µ1, the amplitude of the reflected wave BR always has a 
negative sign relative to the incident wave A0. This means that if A0 is positive, BR would be negative 
and vice versa; Summarily, whenever µ2 > µ1 the incident wave experiences a phase change of π upon 

iπreflection (because e = −1). Moreover, for µ2 > µ1, we |R| > |T | meaning that when transitioning 
to a denser string, the amplitude of the reflected wave is greater than the amplitude of the transmitted 
wave. This makes sense seeing as it would be harder for a wave to propagate through a heavier string. 

– µ2 → 0 (Infinitely light on right): If we have an infinitely light string on the right, then this is tan-
tamount to having no string after x = 0. Eq.(41) tells us the transmitted amplitude is twice that of 
the initial amplitude, but this is fictitious because if µ2 = 0 then there is no string through which this 
amplitude can propagate. Thus all of the (real) wave returns to its source and we have R = 1. (Fig. 6) 
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More generally, for µ2 < µ1, we find |R| < |T | indicating that when transitioning to a less dense string, 
the amplitude of the transmitted wave is greater than the amplitude of the reflected wave. This makes 
sense seeing as it would be easier for a wave to propagate through a lighter string. 

3.4 Wave Attenuation 
In our derivation of the wave equation, we analyzed the properties of coupled oscillators under the assump-
tion that each oscillator experienced the energy-conserving spring force definitive of Hooke’s law. This was 
also our basic assumption when we analyzed simple harmonic motion, but to bring our models closer to 
reality, we later incorporated the e�ects of air drag given the knowledge that mechanical energy is rarely 
conserved in actual systems. Similarly, to describe real waves we would need to incorporate such energy-
dissipating e�ects into our derivation of the wave equation. 

For the case of coupled masses oscillating in the transverse direction (i.e., a direction perpendicular to 
the axis which defined their couplings), our previous equation of motion for the mass in the jth position 
was 

mÿ  j = k(yj+1 − yj ) − k(yj − yj−1). [Energy-conserving system]. (42) 

If we were to incorporate air-drag into this equation, we would need to include the velocity dependent drag 
force −bẏj . Doing so, gives us the equation of motion 

mÿ  j = −bẏj + k(yj+1 − yj ) − k(yj − yj−1). (43) 

Mirroring our previous derivation of the wave equation, we can take our lattice spacing a to 0 and define 
macroscopic quantities like the linear mass density µ = lima→0 m/a and the average string tension T = 
lima→0 ka. We would also have to define a drag coeÿcient for the string itself as 

β ≡ lim 
b
. (44) 

a→0 a 

The resulting wave equation would be 

∂2y ∂y ∂2y2+ 2λ = v , (45)
∂t2 ∂t ∂x2 p

where v = T/µ and 2λ = β/µ. To solve this wave equation, we can use the fact that the di�erential 
equation is ”linear and homogeneous with constant coeÿcients” to apply methods similar to those used to 
solve the other equations of motion with similar properties. First we rewrite this equation in terms of the 
complex variable z(x, t) (where y(x, t) = Re[z(x, t)]). 

∂2z ∂z 2 ∂
2z 

+ 2λ = v , (46)
∂t2 ∂t ∂x2 

Given its properties, we can assume that the solution to this equation is an exponential (representing a wave 
traveling to the right) of the form 

z(x, t) = Aei(kx−ωt), (47) 

where the relationship between k and ω has yet to be determined. Inserting this solution into Eq.(46), we 
find 

− ω2 − i2λω = −v 2k2 , (48) 

which is the desired relationship between k and ω. Given Eq.(48), there can be various types of dissipative 
behaviors in our system and these behaviors are determined by our system’s boundary conditions. 

As a specific example, we follow the case outlined at the end of http://www.people.fas.harvard.edu/ dj-
morin/waves/transverse.pdf. Imagine that at x = 0, the string is oscillating with a wave amplitude Ae−iωt 

which persists for all time. Since there is no decay in the amplitude we know ω must be exclusively real and 
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Figure 7: Wave amplitude decreasing after entering a dissipative medium. Figure from 
http://www.phy.pmf.unizg.hr/ mpozek/research.html Courtesy of Miroslav Požek. Used with permission. 

thus Eq.(48) must define a wave number k which is complex. Solving for this wave number we find r� ω �2 
k = − 2iλ ≡ k0 + iK, (49) 

v 

where we used the fact that 
√ 
a + ib is a complex number to replace it with a real part k0 and an imaginary 

part K6. We thus find that Eq.(47) becomes 

i(k0x−ωt)z(x, t) = Ae−Kx e . (50) 

This is a single solution, the other solution could be found through a similar procedure by beginning with 
y(x, t) = Be−i(kx−ωt). We would then find the general solution is 

i(k0x−ωt) −i(k0 −ωt)z(x, t) = Ae−Kx e + Be−Kx e . (51) 

Computing the real part of this quantity gives us the physical solution for this situation: 

y(x, t) = Re[z(x, t)] = A0e −Kx cos(k0x − ωt − φ), (52) 

where A0 and φ are phases set by the initial conditions of this system. Given what we know about how 
exponentials change the amplitude of waves, we should easily be able to visualize Eq.(52). It would consist 
of a wave decaying exponentially as a function of distance from the origin (See Fig. 7). 

Compared to our previous traveling wave solutions, Eq.(52) better represents how real waves propagate 
because such waves are usually moving through media which dissipate the wave’s initial energy. 

4 Sound Waves 
We have so far been discussing the properties of waves rather generally using the waves on a string as an 
example. What about the descriptions of the sound and light waves which served as the introduction to this 
chapter? In this final section, we will briefly discuss sound waves, leaving light (or electromagnetic waves) 
to the next lesson. 

Sound waves (like waves on a string and unlike electromagnetic waves) comprise propagation of a dis-
turbance through a medium. For sound waves the medium consists of a gas, liquid, or a solid, and the 
disturbances are longitudinal oscillations (i.e., oscillations along the direction of wave propagation) in the 
positions of the molecules which define the medium. We present the wave equation for sound waves, with-

√6To solve for it explicitly we could use the identity a + ib = ρ(cosh η + i sinh η) where ρ2 = a and 2η = sinh−1(b/2a2). 
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out derivation to highlight its similarity to the wave equations we’ve studied so far (derivations can be found 
in most of the references on the website). We will only consider (again for simplicity) sound waves propa-
gating in a single direction. 

Say we have a region of space consisting of a gas of molecules of mass density ρ. If the total pressure 
in that region of space is Ptot, we can separate Ptot into a base pressure P0 and a pressure fluctuation p, the 
latter of which leads to what we experience as a sound wave: 

Ptot = P0 + p. (53) 

Then considering the properties of the longitudinal oscillation and some results from thermal physics, we 
find that the wave equation for p is 

∂2p γP0 ∂
2p 

= , (54)
∂t2 ρ ∂x2 

where γ is a quantity which depends on the atomic composition of a molecule of the gas; for diatomic gases 
(like N2 and O2 which constitute much of air), γ = 7/5. Given our previous wave equation, we can infer 
that the speed of the wave propagation for pressure waves is s 

c = 
γP0 

. (55)
ρ 

Given that, for air, γ ≈ 7/5, ρ = 1.275 kg/cm3, and P0 = 1 atm, we find that the numerical value of the 
speed of the pressure wave is 

c ≈ 330 m/s, (56) 

which is indeed the speed of sound. 
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