
      

              
               

    

 

  
 

 

  
 

  

  
  

    
       

  

       
      

 

   

      
  

  

 

Massachusetts Institute of Technology MITES 2017–Physics III 

Assignment 4: Coupled Oscillations and Fourier Series 

Preface: In this assignment, we practice solving di�erential equations, studying the nonlinear properties of 
the pendulum. practice computing the properties of coupled oscillator systems, and use Fourier Series to 
derive an identity for π2. 

1. Third-order di�erential equation 
Find three independent solutions to the third-order di�erential equation 

d3 

x(t) + x(t) = 0. (1)
dt3 

You can write these solutions in terms of complex exponentials. But if x(t) is a real quantity what is 
the general solution to this di�erential equation (Your di�erential equation should have three undetermined 
constants because this is a third order di�erential equation.) 

2. Corrections to Pendulum Period 
We previously showed, that in the small angle approximation the period of a pendulum is T = p
2π `/g. In this problem we compute corrections to this result to show that the period is actually 
dependent on the amplitude of our motion. 

(a) Using the equation for energy conservation of a pendulum and the heuristic dt = dθ/θ̇, show that 
the exact expression for the period of a pendulum (which begins from rest at a angle θ0) is s Z θ08` dθ 

T = √ . (2) 
g 0 cos θ − cos θ0 

(b) We will find an expression for T up to second order in θ0 in the following way. First, use the 
identity cos φ = 1 − 2 sin2(φ/2) to write T only in terms of sines. This way we have quantities 
which go to zero as θ → 0. Next, make the change of variables sin x = sin(θ/2)/ sin(θ0/2). Finally, 
using the binomial series, expand the integrand in powers of θ0 and perform the first two non-
zero integrals to show that s � 

2 � 
` θ0T ' 2π 1 + + · · · (3) 
g 16 

3. Two coupled oscillators 
We have two masses m1 and m2 which are free to move along the horizontal axis. The masses have a 
spring of spring constant k joining them. 

Figure 1 
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We define the center of mass of the particles as 

m1x1 + m2x2
Xcm ≡ (4) 

m1 + m2 

and the distance between them as 
R ≡ x2 − x1 (5) 

Given the equations of motion of the system, what is the most general solution for x1(t) and x2(t)? It 
will be helpful to define results in terms of the reduced mass µ of the system: 

m1m2 
µ = . (6) 

m1 + m2 

(Hint: I suggest you begin by use the ”add and subtract” method outlined at the beginning of Lecture notes 06 
and then use Eq.(4) and Eq.(5) to find equations of motion for Xcm and R). 

4. Three coupled masses 
We have three identical masses m joined by three identical springs of spring constant k. The masses 
are constrained to move on a line. 

Figure 2 

(a) What are the normal mode frequencies and corresponding normal modes of this system? 
(b) What is the general solution for x1, x2, and x3 for this system? (After finding the normal modes 

and normal mode frequencies you can simply insert your results into the general solution Eq. 
(37) from Lecture Notes 06.) 

5. The Strogatz Sync 
Watch the video in the link x from 11:30 to 14:10 (Feel free to watch the entire video for some context, 
but doing so is not necessary for this problem). Our goal in this problem is to develop a quantita-
tive explanation for what Strogatz observes in his ”two-metronomes-on-a-platform on-two-bottles” 
system. In particular we want to understand why the two metronomes evolve to be in sync. 

Figure 3 
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https://www.ted.com/talks/steven_strogatz_on_sync/transcript?language=en


 

 

  
  

  
    

 
 

  
 

     
  

 
 
 

 
 

   

 

 
      

   
        

  

 
 

    
       

     
 

To this end, we depict the Strogatz’s system as the system in Fig. 3. We will ignore the motion of the 
platform and the bottle and only focus on the motion of the metronomes. We model each metronome 
as a mass m coupled to a wall by a spring of spring constant k. Without the platform between them, 
the two metronomes oscillate independently of one another. Similarly, without anything coupling 
the two masses in our model they also oscillate independently of one another. Thus we model the 
platform in the video by including a spring of spring constant kM between the two masses and a 
dashpot connecting them. 
The dashpot exerts a force bv on the masses, where v is the relative velocity of the two ends of the 
dashpot. The dashpot force opposes motion. Let x1 and x2 be the displacements of the two masses 
from equilibrium. 

(a) Using the above model of Strogatz’s system, explain (as quantitatively as possible) why the two 
metronomes eventually sync up. In other words show why the antisymmetric mode (the ”x1 = 
−x2 ” mode) decays away to zero, and why only the symmetric mode (the ”x1 = x2 ” mode) re-
mains. Also, use the model you develop to approximately calculate how much time it would take 
the metronomes to sync if they began from arbitrary positions and initial velocities. 

6. Fourier Series 
We previously found that the general solution to the wave equation for a string fixed at the ends of a 
domain [0, L] is 

∞ � � 
y(x, t) = 

X 
[αn sin(ωnt) + βn cos(ωnt)] sin 

nπ
x , (7) 

L 
n=1 

where ωn = nπv/L, where v is the velocity of the wave. 

(a) At t = 0, we pluck a string so that it has the form. ( 
x for 0 ≤ x ≤ L/2 

y(x, 0) = (8)
L − x for L/2 ≤ x ≤ L 

At this initial time, the string is at rest. Determine the values of the αn and βn coeÿcients in 
Eq.(7). (One of these calculations is really easy. The other will require integration by parts.) 

(b) Extra Credit–Computing π2: Using Eq. (57) in Lecture notes 07, and the above results we can 
compute the total energy (for t > 0) of the string as a series. Using Eq. (54) we can compute the 
total energy at t = 0. By conservation of energy, these two energies must be equal. Use this fact 
to derive the identity 

π2 ∞X 1 1 1 1 
= = 1 + + + + · · · , (9)

8 n2 9 25 49 
n=1,3,5,... 

where the sum runs over all odd integers. 
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