Assignment 6: Electromagnetism and Final Exam Review Assignment

Preface: The first part of this assignment consists of practice problems to review course material. The final problem provides an example of determining a magnetic field from an electric field. Use the first five problems as review (they are not to be handed in). Only turn in Problem 6 on Sunday night.

1. Oscillations Near Equilibrium

A particle of mass m (confined to have position $x>0$) is near the stable equilibrium of the potential

$$
\begin{equation*}
U(x)=\frac{\Delta_{2}}{x^{2}}-\frac{\Delta_{4}}{x^{4}} \tag{1}
\end{equation*}
$$

What are the units of Δ_{2} and Δ_{4} ? If the mass begins at rest a distance ℓ_{0} away from the stable equilibrium, what is the speed of the particle when it passes the equilibrium position?

2. Underdamped Oscillator

An underdamped oscillator with phase $\phi=0$ and initial amplitude A_{0}, starts off at the position $x(t=0)=A_{0}$. The natural (i.e., undamped) frequency of the oscillator is ω_{0} and the damping time constant is $\gamma=b / 2 m$ (with b the damping coefficient). At what time is the speed of the oscillator maximum? (Simplify result as much as possible)

3. Forced Oscillator

A mass m is attached to a spring of spring constant k. The mass is at an equilibrium of the spring when it is at position $x=0$. The mass begins from $x=0$ with velocity v_{0}. Two forces $\left.F_{(} 1\right)(t)$ and $F_{2}(t)$ are applied to the mass as shown in Fig. 1. What is the position as a function of time $x(t)$?

Figure 1

What should we get as $\omega \rightarrow 0$? What should we get as $F_{L} \rightarrow 0$?

4. Coupled Oscillator

Two identical springs and two identical masses are attached to a wall as shown in Fig. 2. Find the normal mode (angular) frequencies and the corresponding normal modes of the system.

Figure 2

5. Fourier Series and Waves

A vibrating string, of mass density μ and tension T, has fixed ends. The string is confined to be within a domain of length L and begins at $y(x, 0)=0$ for all possible x in the domain. However, the string also begins with a transverse velocity given by

$$
\begin{equation*}
\dot{y}(x, 0)=v_{0} \sin \left(\frac{2 \pi x}{L}\right) \cos \left(\frac{2 \pi x}{L}\right)+v_{0} \sin \left(\frac{3 \pi x}{L}\right) . \tag{2}
\end{equation*}
$$

What is $y(x, t)$ at time $t=t_{1}$ where

$$
\begin{equation*}
t_{1}=\frac{L}{3} \sqrt{\frac{\mu}{T}} \tag{3}
\end{equation*}
$$

written as a function of x ? (Simplify result as much as possible)

6. Electromagnetism and Vector Calculus

The electric field in a region of space is

$$
\begin{equation*}
\mathbf{E}(z, t)=E_{0}(\cos (k z-\omega t) \hat{\mathbf{x}}+\sin (k z-\omega t) \hat{\mathbf{y}}) \tag{4}
\end{equation*}
$$

where E_{0} has units of electric field, k is the wavenumber, and ω is the angular frequency.
(a) Using Faraday's Law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{5}
\end{equation*}
$$

determine the magnetic field $\mathbf{B}(z, t)$ in this region of space. (Ignore any constants of integration)
(b) From your above results, compute E • B.
(This shows that the electric and magnetic fields are perpendicular.)

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Oscillations and Waves
Mobolaji Williams

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

