
Massachusetts Institute of Technology MITES 2017–Physics III

Solutions 1: Introduction and Kinematics Review

1. (10 pts) Introduce Yourself
Full score if complete.

2. Power Series and Perturbation Theory

(a) (5 pts) We want to expand the equation

αx2 − β = εx3, (1)

Given the power series
x = x(0) + ε x(1) + ε2 x(2) + · · · . (2)

up to second order in ε. Considering the left-hand side (LHS) of the given equation and the
assumed solution in terms of x(k) (for k ≥ 0), we find

αx2 − β = α
(
x(0) + ε x(1) + ε2 x(2) + · · ·

)2 − β
= αx2(0) − β + αε2 x2(1) + 2ε x(1)x(0) + 2αε2 x(2)x(0) + · · ·

= αx2(0) − β + 2αεx(1)x(0) + ε2
(
αx2(1) + 2αx(2)x(0)

)
+ · · · (3)

where · · · stands in for terms of order ε3 or higher. Similarly considering the right-hand side
(RHS), we have

εx3 = ε
(
x(0) + ε x(1) + ε2 x(2) + · · ·

)3
= ε x3(0) + 3ε2 x2(0)x(1) + · · · , (4)

where · · · stands again in for terms of order ε3 or higher. Thus we find that the defining equation,
expanded as a power series in ε (up to second order) is

αx2(0) − β + 2αεx(1)x(0) + ε2
(
αx2(1) + 2αx(2)x(0)

)
+ · · · = ε x3(0) + 3ε2 x2(0)x(1) + · · · . (5)

(b) (5 pts) In the next step of the perturbation theory procedure, we match the coefficients of each
order of ε across the equal sign in Eq.(5). That is we say the coefficient of the ε-independent term
on the LHS of Eq.(5) is equivalent to the ε-independent term on the RHS of Eq.(5); the linear-in-ε
term on the LHS of Eq.(5) is equivalent to the coefficient of the linear-in-ε term on the RHS of
Eq.(5) and so on. Doing so, we find the system of equations,

αx2(0) − β = 0

2αεx(1)x(0) = ε x3(0)

αε2 x2(1) + 2αε2 x(2)x(0) = 3ε2 x2(0)x(1) (6)

or, with the ε powers divided out

αx2(0) − β = 0 (7)
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2αx(1)x(0) = x3(0) (8)

α
(
x2(1) + 2x(2)x(0)

)
= 3x2(0)x(1) (9)

Solving Eq.(7), we find the two solutions

x(0),± = ±
(
β

α

)1/2

. (10)

Using this solution in Eq.(8), gives us

x(1) =
1

2α
x2(0) =

1

2α

(
β

α

)
. (11)

And using Eq.(10) and Eq.(11) in Eq.(9) gives us

x(2),± =
1

2x(0)

(
3

α
x2(0)x(1) − x

2
(1)

)
= ±1

2

(
α

β

)1/2
(
3

α
·
(
β

α

)
· 1

2α

(
β

α

)
− 1

4α2

(
β

α

)2
)

= ± 5

8α2

(
β

α

)3/2

. (12)

(c) (5 pts) By the definition of power series in ε given in the prompt, we have that the solution to

αx2 − β = εx3 (13)

can be written as
x = x(0) + ε x(1) + ε2 x(2) + · · · . (14)

Given Eq.(10), Eq.(11), and Eq.(12), we find that Eq.(14) becomes

x± = ±
(
β

α

)1/2

+ ε
1

2α

(
β

α

)
± ε2 5

8α2

(
β

α

)3/2

+ · · · (15)

and the two approximate solutions to Eq.(13) are

x+ =

(
β

α

)1/2

+ ε
1

2α

(
β

α

)
+ ε2

5

8α2

(
β

α

)3/2

+ · · · (16)

and

x− = −
(
β

α

)1/2

+ ε
1

2α

(
β

α

)
− ε2 5

8α2

(
β

α

)3/2

+ · · · , (17)

If we take ε → 0 in Eq.(16) and Eq.(17), we find x+ = +
√
β/α and x− = −

√
β/α as we should

expect for the solutions of Eq.(13) when ε→ 0.
(d) (5 pts) We want to find an approximate solution to the equation

x2 − 1 = 0.1x3 (18)

Eq.(18) is identical to Eq.(13) with α = β = 1.0 and ε = 0.1. Therefore we can use Eq.(16) and
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Eq.(17) to approximately solve Eq.(18). Doing so, we find

x+ =

(
1.0

1.0

)1/2

+ (0.1)
1

2(1.0)

(
1.0

1.0

)
+ (0.1)2

5

8(1.0)2

(
1.0

1.0

)3/2

+ · · ·

= 1.0 + 0.1/2 + 0.01× (0.625) + · · ·
= 1.056 + · · · , (19)

and

x− = −
(
1.0

1.0

)1/2

+ (0.1)
1

2(1.0)

(
1.0

1.0

)
− (0.1)2

5

8(1.0)2

(
1.0

1.0

)3/2

+ · · ·

= −1.0 + 0.1/2− 0.01× (0.625) + · · ·
= −0.956 + · · · , (20)

where · · · stand for ε3 = 0.001 order corrections to this result. Solving Eq.(??) with Wolframalpha,
we find that the two real solutions are

x+ ≈ 1.057 and x− ≈ −0.955 [Numerical Results], (21)

both of which are in good agreement with Eq.(19) and Eq.(20), respectively.
We note finally that the error between the approximate solution and Wolframalpha’s result is on
the order of 0.001. This makes sense given the ε3 terms we neglected in the perturbation series:
For ε = 0.1 we have ε3 = 0.001, so our approximate values Eq.(16) and Eq.(17) should differ from
the true result by ε3 = 0.001.

�

3. (10 pts) Marble and elevator

We want to find the height of the elevator given the kinematical properties of the marble’s motion. We
are not given the speed of the elevator, so we must either solve for it or eliminate it from our equations.
If, starting from t = 0, the elevator ascends uniformly until a time t = T1, then at this time the elevator
would be at the height

h = v0T1, (22)

where v0 is the speed of the elevator’s ascension. When the marble is released from the elevator, it has
the elevator’s vertical velocity of +v0 and it is at the height h. After a time T2−T1, the marble is on the
ground (i.e., at zero height). With this information, the kinematics of the marble at the point of zero
height is given by

0 = h+ v0(T2 − T1)−
1

2
g(T2 − T1)2, (23)

where T2 − T1 (with T2 ≥ T1) is the time the ball takes to fall to the ground. Using Eq.(22) to solve for
the unknown variable v0, we find v0 = h/T1. Inserting this result into Eq.(23), yields

0 = h+
h

T1
(T2 − T1)−

1

2
g(T2 − T1)2 = h

T2
T1
− 1

2
g(T2 − T1)2. (24)

Therefore, the value of h is
h =

gT1
2T2

(T2 − T1)2. (25)

We note that the units of Eq.(25) are [g]× [T1/T2]× [(T2 − T1)2] = m/s2 × s/s× s2 = m as we should
expect for a height.
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Checking a limiting case for Eq.(25) we note that as T1 → 0, h → 0 (i.e., if we release the marble
immediate after the elevator starts to rise, it doesn’t get too far off the ground). Similarly, we find
T2 → T1, gives us h → 0 meaning if the marble takes the same amount of time to fall as to it took the
elevator to rise, then the marble hasn’t risen at all.
Finally checking the answer quoted in the text, we find, with T1 = 4 sec and T2 = 8 sec (and being on
earth),

h =
gT1
2T2

(T2 − T1)2 = 9.8 m/s2 × 4 sec
2(8 sec) (4 sec)2 = 39.2 m. (26)

�

4. (10 pts) Thought Experiments in Kinematics
A ball is thrown off a cliff at a height h and at an angle such that the ball covers a maximum horizontal
distance. We want to find the value of dmax given the possibilities listed in the prompt. We will proceed
through each possible answer, explaining why the answer contradicts (or does not contradict) simple
properties we expect the motion should have.

–
dmax

?
=
gh2

v2
(27)

Incorrect answer. As v → 0, this expression becomes huge which contradicts what we know
should happen. If the speed of the ball went to zero, the height should go to zero as well.

–
dmax

?
=
v2

g
(28)

Incorrect answer. This result is independent of hwhich contradicts what we know should happen.
The maximum distance when h = 0 should not be the same as the maximum distance when h 6= 0,
because the ball does not stay in the air for the same amount of time between the two cases, and
consequently the trajectory has a different y vs x behavior and a different maximum distance.

–

dmax
?
=

√
v2h

g
(29)

Incorrect answer. This result goes to zero as h → 0 which contradicts what we know should
happen. The maximum distance when h = 0 is not equal to zero.

–

dmax
?
=
v2

g

√
1 +

2gh

v2
(30)

Correct answer. This result is consistent with all the limiting cases we expect from intuition. If
h → 0, we find the maximum distance is v2/g (which is the correct answer for the maximum
range of the standard projectile motion. See ”Range of Projectile Motionx). As v → 0, we have
2gh/v2 � 1 and the result approximates to ' (v2/g)

√
2gh/v2 = v

√
2h/g which goes to 0 as v

goes to zero; thus as the velocity goes to zero so does the maximum height as we expect. Moreover
this result is exclusively positive for valid ranges of g, h, and v2. If −2gh > v2, then there is no
maximum distance.

–
dmax

?
=
v2

g

(
1 +

2gh

v2

)
(31)

Incorrect answer. This result remains non-zero as v → 0 which contradicts what we know should
happen. As the speed of the ball goes to zero, the maximum distance we can achieve should also
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go to zero because a stationary ball doesn’t move horizontally (or in any direction). But as v → 0,
the above expression reduces to 2h, twice the height we’re throwing from which does not make
sense.

–
dmax

?
=

v2/g

1− 2gh/v2
(32)

Incorrect answer. This result has a singularity (i.e., dmax → ∞) at v2 = 2gh which contradicts
what we know should happen. There is no height where we should expect the maximum distance
to go to infinity.

�

5. (10 pts) Projectile Motion on a Hill

Figure 1: Projectile Motion

The purpose of this problem is to get you to practice asking questions about physical systems and
formulating these questions in a way that they are answerable using the physics you’ve learned. This
is an open ended problem, so there are many questions you could ask. Some of them are:

– How far along the decline does the rock travel?
– Assuming φ is fixed, what angle θ maximizes the total distance along the decline the rock travels?
– How far (vertically) below its starting point does the rock land?
– What is the potential energy of the rock at the lowest point in its trajectory?
– What is the total time it takes the rock to complete its trajectory?
– What angle maximizes the area under the curve of the trajectory?
– How would these results change if φ < 0 (i.e., there was a incline instead of a decline).

We will answer the first two, namely we will determine the total distance along the decline the ball
travels and determine the angle θ which maximizes this distance given a fixed φ.
For this problem the kinematical equations for x and y have their standard form

x(t) = (v0 cos θ)t y(t) = (v0 sin θ)t−
1

2
gt2. (33)
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If we take ` to be the total distance the object travels along the decline, then by geometry it has traveled
a total horizontal distance ` cosφ and fallen a distance ` sinφ from its starting point. Assuming it
completed its trajectory in a time tf , we have the equations

x(tf ) = ` cosφ = v0 cos θtf (34)

y(tf ) = −` sinφ = v0 sin θtf −
1

2
gt2f (35)

Solving Eq.(34) for tf , we find

tf =
` cosφ

v0 cos θ
, (36)

and plugging this result back into Eq.(35) gives us

− ` sinφ = ` cosφ tan θ − g`2 cos2 φ

2v20 cos
2 θ
. (37)

Dividing by ` to eliminate the extraneous ` = 0 solution we find

− sinφ = cosφ tan θ − g` cos2 φ

2v20 cos
2 θ

(38)

which when solved for ` gives

` =
2v20
g

cos2 θ (tanφ+ tan θ)

cosφ
, (39)

which is the total distance the rock travels along the decline. We note that, as we expect, φ = 0 reduces
to the standard 2v20 cos θ sin θ/g result.
To compute the angle θ where this distance is maximum we differentiate Eq.(39) with respect to theta
to find

d`

dθ
=

2v20
g cosφ

[
−2 cos θ sin θ (tanφ+ tan θ) + cos2 θ

(
sec2θ

)]
=

2v20
g cosφ

[
−2 cos θ sin θ tanφ− 2 sin2 θ + 1

]
=

2v20
g cosφ

[
− sin 2θ tanφ+ cos 2θ

]
, (40)

which implies Eq.(39) has a critical point at θ given by

cot 2θ0 = tanφ. (41)

Differentiating Eq.(40) once again and setting θ = θ0, we find

d2`

dθ2

∣∣∣
θ=θ0

= − 4v20
g cosφ

[
cos 2θ0 tanφ+ sin 2θ0

]
< 0. (42)

Thus with Eq.(??), we find that the angle

θ =
1

2
tan−1(cotφ) (43)

yields a trajectory has a maximum travel along the decline.
�
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