
Massachusetts Institute of Technology MITES 2017–Physics III

Solutions 2: Simple Harmonic Oscillator and General Oscillations

Preface: This problem set is meant to provide you practice in using complex exponentials to prove trigono-
metric identities, and in understanding simple harmonic oscillator systems, numerical solutions to differen-
tial equations, and small oscillations.

1. (5 points) Practice with complex exponentials
We want to express sin(θ1 + θ2 + θ3) as a sum of products of the sines and cosines of the individual
angles. To do so we will begin by expressing the given quantity as the imaginary part of a product of
exponentials. Doing so we find

sin(θ1 + θ2 + θ3) = Im
[
ei(θ1+θ2+θ3)

]
= Im

[
eiθ1eiθ2eiθ3

]
. (1)

Expanding the right hand side of this equation, we find

sin(θ1 + θ2 + θ3)

= Im
[
(cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))(cos(θ3) + i sin(θ3))

]
= Im

[
cos θ1 cos θ2 cos θ3 + i cos θ1 cos θ2 cos θ3 + i cos θ1 sin θ2 cos θ3

− cos θ1 sin θ2 sin θ3 + i sin θ1 cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3

− sin θ1 cos θ2 sin θ3 − i sin θ1 sin θ2 sin θ3

]
. (2)

And taking the imaginary part gives us

sin(θ1 + θ2 + θ3) = cos θ1 cos θ2 cos θ3 + cos θ1 sin θ2 cos θ3 + sin θ1 cos θ2 cos θ3 − sin θ1 sin θ2 sin θ3, (3)

a result which could also be derived by using the sum of angle formulas for the sine function.
�

2. (10 points) Changing a spring

Figure 1

We want to determine the dynamics of the mass m after we change the spring constant of the right
spring from k to 3k. Before we make the change, the dynamics of x is governed by the following
equation of motion:

mẍ = Fnet = −k(x+ `)− k(x− `) = −2kx. (4)

The first term after the first equality in Eq.(4) arises from the the fact that the left spring is at equilibrium
when x = −` (i.e., when the mass is a distance ` from the left wall), and the second term arises from
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the fact that the right spring is at equilibrium when x = +` (i.e., when the mass is a distance ` from
the right wall). Right when the spring is changed, the mass is at rest at the equilibrium position (x = 0
by Eq.(4)) given by these two spring forces, so we have the initial conditions

x(t = 0) = 0, ẋ(t = 0) = 0. (5)

After we change the spring constant of the right spring, the new equation of motion is

mẍ = Fnet = −k(x+ `)− 3k(x− `) = −4k(x− `/2), (6)

indicating that the new equilibrium position is at x = `/2. Defining X ≡ x− `/2 and

ω2
0 = 4k/m,

Eq.(6) reduces to the equation of motion

Ẍ + ω2
0X = 0 (7)

Which has the general solution

X(t) = A cos(ω0t) +B sin(ω0t). (8)

Writing this in terms of x(t) we find

x(t) =
`

2
+A cos(ω0t) +B sin(ω0t). (9)

Imposing the initial conditions Eq.(5), yields B = 0 and A = `/2. Therefore, we finally have the
solution

x(t) =
`

2
(1− cos(ω0t)) = ` sin2(ω0t/2), (10)

with ω0 again given by
√

4k/m and where we used a trigonometric identity in the final line.
�

3. (10 points) Removing a spring

Figure 2

We again want to find the specific solution for x(t) given initial conditions we can infer from the system.
Namely, a mass connected to two springs of spring constant k is moving with amplitude d (Fig. 2).
Such a system has an effective spring force of k + k = 2k because the mass is in equilibrium in Fig. 2
and thus any deviation from x = 0 returns it to its original position. At the time when the particle is at
x = d/2 and is moving to the right, we cut the spring on the right, and we are to determine the mass’s
subsequent motion and the amplitude of that motion.
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For a mass moving with amplitude d, the position of the particle (prior to removing the spring) is

x(t) = d sin(ω1t− φ), (11)

where ω1 =
√

2k/m and φ is an unknown (and ultimately unimportant) phase. If at a t = t0 we find
x(t0) = d/2, then we must have sin(ω1t0 − φ) = 1/2. We can thus infer that

cos(ω1t0 − φ) =

√
1− sin2(ω1t0 − φ) =

√
1− (1/2)2 =

√
3

2
, (12)

where we chose the positive root to ensure that the velocity is positive at this chosen time. We thus
find that the velocity is

ẋ(t0) = dω1 cos(ω1t− φ) =
dω1

√
3

2
. (13)

Now, we consider the system after the right spring is removed. In this new system, the angular fre-
quency of motion is ω2 =

√
k/m (because there is only a single spring). We shift our origin of time so

that t0 is now t = 0. We thus have the initial conditions

x(t = 0) =
d

2
, ẋ(t = 0) =

dω1

√
3

2
. (14)

Given the general solution of the harmonic oscillator (stated in the notes) in terms of the initial position
and velocity, we have

x(t) = x0 cos(ω2t) +
v0

ω2
sin(ω2t)

=
d

2
cos(ω2t) + d

ω1

ω2

√
3

2
sin(ω2t). (15)

Given ω2 =
√
k/m and ω1 =

√
2k/m, this result then reduces to

x(t) =
d

2
cos(ω2t) + d

√
3

2
sin(ω2t) (16)

which is the final result for the value of the position if t = 0 is the time when the right spring is
removed.
To compute the amplitude, we note that when we have a sinusoidal motion represented by a linear
combination of a sine and cosine function, the amplitude of the motion is the square root of the sum
of squares of the coefficients of the sinusoids. In this case, the amplitude is

Amplitude =

√√√√(d
2

)2

+

(
d

√
3

2

)2

= d

√
1

4
+

3

2
= d

√
7

2
. (17)

�

4. (5 points) Effective Spring Constant
We are seeking to find the effective spring constant experienced by the mass in Eq.(??) presuming it
is translated a distance x from its equilibrium configuration. The easiest way to do this is to assume
there exists a very small mass ∆m at the connection point between k1 and k2, determine the equations
of motion of the system and then take ∆m→ 0 to find a useful constraint. We will define the position
of ∆m as x∆.
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(a)

Figure 3

At equilibrium we have x = x∆ = 0. When we pull the mass m to the right, both x and x∆ increase
and the net forces on m and ∆m yield the equations, respectively,

mẍ = −k2(x− x∆) (18)
∆mẍ∆ = +k2(x− x∆)− k1x∆. (19)

Eq.(18) follows from considering what force m experiences when x is increased beyond x∆. The first
term in Eq.(19) follows from a similar consideration and the second term follows from the fact that
∆m is attached to a spring on its left.
In this system, there is in fact no ∆m, so we take ∆m→ 0, thus yielding the equation

0 = k2(x− x∆)− k1x∆ = k2x− (k2 + k1)x∆, (20)

which when solved for x∆ gives

x∆ =
k2

k1 + k2
x. (21)

Inserting this into Eq.(18) yields

mẍ = −k2

(
x− k2

k1 + k2
x

)
= − k1k2

k1 + k2
x ≡ −keffx, (22)

implying the effective constant is keff = k1k2/(k1 + k2) for the system in Fig. 3a.
�.

5. (10 points) Oscillation of bead with gravitating masses

Figure 4
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We want to determine the position as a function of time of the mass shown in Fig. ?? given that it
under goes small oscillations about the origin with the initial conditions x = 0 and ẋ(0) = v0. In
order to determine x(t) we first need to find the equation of motion of the system under the stated
approximation.
The easiest way to determine this equation of motion is to find the potential energy of the system,
approximate it given an assumption of small oscillations, and then use the approximation to find the
force.
Given that the gravitational potential energy between two masses m1 and m2 separated by a distance
r is

U = −Gm1m2

r
, (23)

where G is Newton’s gravitational constant. For the system in Fig. ??, if the mass is at a position x
along the x axis, then the distance between m and each mass M is

√
a2 + x2. Thus the total potential

energy of the system is
The potential energy of the mass at a position x is

U(x) = − GMm√
a2 + x2

− GMm√
a2 + x2

= −2GMm

a

(
1 +

x2

a2

)−1/2

. (24)

Now to implement the small oscillations approximation, we will make the assumption that the oscil-
lating mass m stays very close to the origin. Namely, we will take

|x| � a [Small oscillations]. (25)

This will allow us to approximate Eq.(24) given the Taylor series approximation

(1 + x)n = 1 + nx+O(x2) [For |x| � 1 and n any real number]. (26)

We thus find

U(x) = −2GMm

a

(
1 +

x2

a2

)−1/2

= −2GMm

a

(
1− x2

2a2
+O(x4)

)
. (27)

From the approximate potential energy Eq.(27), we could then find the force exerted on the mass in
the small oscillation approximation. With the standard equation expressing the relationship between
force and potential energy, we find

F (x) = −dU
dx

= −2GMm

a3
x (28)

Therefore, the small-oscillations equation of motion for this system is

mẍ = F (x) = −2GMm

a3
x (29)

or, equivalently,
ẍ+ ω2

0x = 0, (30)

where we defined

ω0 ≡
√

2GM

a3
, (31)

as the frequency of small oscillations of the system. The general solution to Eq.(??) given initial con-
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ditions x(0) = x0 and ẋ(0) = x0 is

x(t) = x0 cos(ω0t) +
v0

ω0
sin(ω0t). (32)

With the stated initial conditions (specifically of x0), we then find Eq.(32) becomes

x(t) =
v0

ω0
sin(ω0t) = v0

√
a3

2GM
sin

[
t

√
2GM

a3

]
(33)

As a side note, given Eq.(33) we thus also see that the condition for small oscillations (i.e., |x| � a) is
only satisfied if the initial speed satisfies

v0 �
√

2GM

a
. (34)

6. Numerical Solution to Differential Equations
Euler’s method is a numerical procedure for solving differential equations which makes use of the
first order changes in functions. Namely for a time ε which is small relative to the larger time scales
we are interested in, we can make the approximation

x(t+ ε) = x(t) + ε ẋ(t) +O(ε2) (35)
ẋ(t+ ε) = ẋ(t) + ε ẍ(t) +O(ε2), (36)

where O(ε2) stands for terms of order ε2 or higher. Therefore, if we have an equation of motion for
x(t) which is written as

ẍ(t) = F (x, ẋ, t), (37)

where F is a function of position x, velocity ẋ, and/or time t, we can solve for x(t) step-by-step. As-
suming we know x(t) and ẋ(t), at t = 0 we can use Eq.(35) to find x at t = 0 + ε and we can use Eq.(36)
and Eq.(37) to find ẋ at t = 0 + ε. In this way, we can find x(t) from t = 0 to an arbitrary time t by
moving in steps of ε. In this problem we implement this procedure to solve the equation of motion of
a pendulum
Before we can implement this code we must get set up with our numerical program Mathematica. Here
are the preliminary steps before you can begin this problem

(i) Log in to your account in MIT’s Athena Cluster, and go to the course website.
(ii) Download the code ”numerical diff eq.nb” from the course webpage and open it in Mathematica.

(iii) Select a block of code and run it by pressing Shift+Enter.

Now we can begin the problem.

(a) (10 points) For each line of the code, write a sentence explaining the line’s utility in the overall
code. (You can annotate the code itself)

(b) (5 points) A student wrote this code intending to produce a plot of simple harmonic motion, but
he made a few errors. Given Eq.(35), Eq.(36), and the simple harmonic equation of motion

ẍ = −ω2
0x (38)

modify the code to plot x(t) as a function of time with the initial conditions x(t = 0) = 1.0 m,
ẋ(t = 0) = 1.0 m/s2, and with ω2

0 = 5.0 rad/s2. (Hint: The simplest way to do this is to just copy and
paste the incorrect code and make modifications to make it correct.)
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(c) Extra Credit: (+5 points) Taking θ(t = 0) = π/2 rad, θ̇(t = 0) = 0, g = −9.8 m/s2, modify the
Euler’s algorithm code to plot θ(t) as a function of time for the pendulum equation of motion

θ̈ = −g
`

sin θ. (39)

Useful Information: The Mathematica function for sin(x) is ”Sin[x]”. What is the period of the
pendulum motion in the plot? (i.e., how much time does it take to go from one amplitude to
another?). How does this compare to the prediction given by T = 2π

√
`/g?

Submitting: As your submission for this part of the assignment, you can print out the entire
Mathematica notebook which should include your annotations of the existing code, and your plots
of simple harmonic and pendulum motion (in addition to the answers for the questions in (c)).

7. (15 points) Small Oscillations about equilibria
Given the potential energy function

U(x) =
E0

a4

(
x4 + 4ax3 − 8a2x2

)
, (40)

there are a number of questions we can ask concerning the oscillatory behavior of this system. Here
are a few of them:
Possible Questions

– At what values of x is the system at an equilibrium?
– At which of these values is the equilibrium stable?
– What are the frequencies of small oscillations about these equilibrium points? (Also, how do we

define small oscillations in this system?)
– What are corrections to the equation of motion about the equilibria?
– If the mass begins at an unstable equilibrium, about how much time would it take it to fall into

one of the stable equilibria?
– What is the total energy of this system near the various stable equilibria?

We will answer the first three questions. First, we note that a particle is at an equilibrium (but not
necessarily a stable equilibrium) if the net-force acting on the particle is zero. Given the fact that the
force is the negative of the spatial derivative of the potential energy, we find that the force on the
particle is

F (x) = −U ′(x) = −E0

a4

(
4x3 + 12ax2 − 16a2x

)
= −4E0

a4
x
(
x2 + 3ax− 4a2

)
. (41)

Setting this force to zero, we have the condition

x
(
x2 + 3ax− 4a2

)
= x (x+ 4a) (x− a) = 0, (42)

which indicates that the equilibria for the potential energy Eq.(40) are

x = −4a, 0, a [Equilibria of U(x)]. (43)

Now to determine whether these equilibria are stable equilibria, we need to determine whether they
correspond to local minima of the potential energy. To do so, we apply the second derivative test to
these equilibria which amounts to evaluating the second derivative of the potential energy at each
value; results which are greater than zero are local minima and stable equilibria.
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Computing the second derivative of Eq.(40), we find

U ′′(x) =
E0

a4

(
12x2 + 24ax− 16a2

)
=

2E0

a4

(
6x2 + 12ax− 8a2

)
(44)

and evaluating this result at Eq.(43), gives us

U ′′(x = −4a) =
80E0

a2
> 0 U ′′(x = 0) = −16E0

a2
< 0, U ′′(x = a) =

20E0

a2
> 0. (45)

Thus we see that x = −4a and x = a are stable equilibria but x = 0 is an unstable equilibrium.
Finally, we can compute the frequency of oscillations about each stable equilibrium xeq by using the
general result

ω0 =

√
U ′′(xeq)

m
, (46)

where we assume the oscillating degree of freedom is a mass m which is moving linearly. Given
Eq.(45), the oscillation frequencies are then

ω0 =

√
80E0

ma2
, [About x = −4a] and ω0 =

√
20E0

ma2
, [About x = a]. (47)

Around each of the stable equilibria the equation of motion of the mass m is (approximately)

ẍ+ ω2
0(x− xeq) = 0, (48)

where we substitute in the respective ω0 and xeq for each point.
�
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