
       

             
         

   

    
 

  

  
    

    
 

Massachusetts Institute of Technology MITES 2017–Physics III 

Solutions 3: Damped and Forced Oscillators (Midterm Week) 

Preface: This problem set provides practice in understanding damped harmonic oscillator systems, solving 
forced oscillator equations, and exploring numerical solutions to di�erential equations. 

1. Equations of Underdamping 

Figure 1: Damped Oscillator 

(a) Given the information in the prompt and in the plot we want to determine the mass of the oscil-
lating degree of freedom and the quality factor of the damped oscillation. The prompt tells us we 
apply a force Fapp = 4 N to pull a spring (of unknown spring constant k) a distance Δx = 0.2 m. 
By Hooke’s law, we find that the spring constant of the system 

Fapp
k = = 20 N/m. (1)

Δx 

The plot provides us with two pieces of information not included in the prompt. From the prompt, 
we can determine the period of oscillation and we can determine how much time it takes the 
amplitude to decay to a specific fraction of its initial value. From the figure we can estimate the 
period to be T = 3 s. For an underdamped oscillator, the period of motion is 

2π 2π 
T = = p , (2)

Ω ω2 − γ2 
0 
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p
where Ω = ω2 − γ2 with ω2 = k/m. Noting that it takes t1/2 = 22 s, for the amplitude of 0 0 
oscillation to decay to half of its initial value we have 

Ae−γt1/2 = A(0.5), (3) 

which upon taking the logarithm of both sides and dividing by t1/2 yields 

γ = 
ln 2 ' 0.0315 s−1 . (4)
t1/2 

With a knowledge of k, T , and γ, as provided by Eq.(1), the plot, and Eq.(4), respectively, we can 
determine the mass through Eq.(2). Solving for ω2 given Ω2, we find 0 

ω2 = 
k 
= Ω2 + γ2 . (5)0 m 

Then using Eq.(2) to write Ω in terms of the period and Eq.(4) to write γ in terms of the ”half-life” 
of the oscillation, we find 

m = 
k ≈ 4.56 kg. (6)

4π2/T 2 + (ln 2/t1/2)2 

(b) With Eq.(6) and Eq.(1), we find that the natural angular frequency of motion is r 

ω0 = 
k ≈ 2.09 rad/s. (7) 
m 

Therefore, with Eq.(??) and Eq.(4), we find that the quality factor of the system is 

Q = 
ω0 ≈ 33. (8)
2γ 

� 

2. R factor 
For an underdamped oscillator, Amy defines the ”R factor” as 

R = π × (Number of oscillation cycles it takes to reach 1/e of the initial amplitude). (9) 

How does R compare to the quality factor Q for an underdamped oscillator? (We’re considering a 
very weakly damped oscillator) 
Solution: We want to compute R and thereby determine how R relates to Q for an underdamped 
oscillator. By the end of the problem, we will have found a new way to interpret Q in terms of kinematic 
variables rather than energy. 
For an underdamped oscillator, the position as a function of time is 

x(t) = Ae−γt cos(Ωt − φ), (10) p
where Ω = ω2 − γ2. By definition, the Q factor for this oscillator is Q = ω0/2γ. In order to find the 0 
number of oscillation cycles it takes to reach 1/e of the initial amplitude, we first need to determine 
how much time it takes to reach e−1 of the initial amplitude. By the fact that the amplitude has the 
time dependent A(t) = A0e

−γt, we can find the time it takes to satisfy the condition in the parentheses 
of Eq.(9) with 

Ae−γt1 = Ae−1 . (11) 
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Solving for t1, we then find that t1 = 1/γ. Now, given that a single oscillation cycle occurs over a time 
T = 2π/Ω ' 2π/ω0 (where we took the approximation given the assumption of very weakly damped 
motion), the number of period cycles we experience in time t1 is 

t1 ω0
# of oscillation cycles = ' . (12)

T 2πγ 

Therefore, Eq.(9) becomes 
R = π × # of oscillation cycles ' 

ω0 
, (13)

2γ 

for very weakly damped motion. Given Q = ω0/2γ, we therefore find R ' Q. 
� 

3. Forced Oscillator 

(a) Our goal in this problem is to determine x(t) given the above initial conditions. First, we write the 
equation of motion for the system. Using the identity sin2 x = 1 − cos(2x), we find the external 
force can be written as 

F (t) = F0 sin
2(ωt) = 

F0 
(1 − cos(2ωt)). (14)

2 

Thus, Newton’s 2nd law for the system gives us 

mẍ = −kx + 
F0 
(1 − cos(2ωt)), (15)

2 

which can be written as 
2 F0 F0 

ẍ+ ω0 x = − cos(2ωt), (16)
2m 2m 

where ω2 = k/m. Defining0 

X ≡ x − 
F0 

, (17) 22mω0 

we can write Eq.(16) as 

X ¨ + ω0
2X = − 

F0 
cos(2ωt). (18)

2m 

From here we can use the general solution to the driven undamped equation of motion to write 
the general solution for this case. Considering Eq. (4) and Eq. (11) in Lecture notes 04, we find 
that the solution to Eq.(18) is 

F0/2m 
X(t) = B cos(ω0t) + C sin(ω0t) − cos(2ωt). (19)

ω0
2 − 4ω2 

Given Eq.(17), we can write this solution in terms of x(t) as 

F0 F0/2m 
x(t) = + B cos(ω0t) + C sin(ω0t) − cos(2ωt). (20)22mω0 ω2 − 4ω2 

0 

Imposing the initial condition x(t = 0) = 0 and ẋ(t = 0) = 0, we find � � 
F0 1 1 

B = − , C = 0. (21)
2m ω0

2 − 4ω2 ω2 
0 
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Therefore, the general solution to the given di�erential equation is 

F0/2m F0 
x(t) = (cos(ω0t) − cos(2ωt)) + (1 − cos(ω0t)). 

ω2 − 4ω2 2mω2 
0 0 

(22) 

or 
F0/2m F0 

x(t) = (cos(ω0t) − cos(2ωt)) + sin2(ω0t)
ω2 − 4ω2 mω2 
0 0 

(23) 

(b) Resonance is defined as the state in which the amplitude of oscillation is maximized. Resonance 
is defined by the nonzero frequency which yields this maximum.The only term in Eq.(22) whose 
amplitude is maximized by a non-zero value of ω is the first term. To maximize the coeÿcient 
of the first term, we minimized the denominator, and we can do so by setting ω2 = 4ω2. Given 0 
k = mω2, we find that the value of k which puts the system in resonance is 0 

k = 4ω2 (24)0 

� 

4. Numerical Solution to Di�erential Equations - Part II 

(a) The various relationships between ω0 and γ which determine the type of motion of our damped 
oscillatory are as follows: 

ω0 > γ leads to underdamped motion (25) 
ω0 < γ leads to damped motion (26) 
ω0 = γ leads to critically damped motion (27) 

(b) Mathematica plots on website 

� 

5. Ball in Bowl 

Figure 2: Ball in Bowl 

State (but do not answer) three precise physics questions we can ask about this system. 
Solution: 
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There are many di�erent questions we can ask about this system. Some of the questions below can be 
answered using methods, we have already covered in class. Other questions require methods outside 
the class (which is fine because I’m only asking you to ask questions and not answer them). 

– What is the equation of motion of the ball in the bowl in terms of θ(t) 
– What is the frequency of small oscillations about the point θ = 0? 
– As an integral, what is an expression for the total period of motion presuming the ball begins 

from rest at an angle θ0 

– What is the first non-linear approximation to the simple harmonic oscillator equation of motion 
for this system? 

– At what radius of the smaller sphere does the angular frequency of motion disappear? 
– If we considered the bowl and sphere to be three-dimensional what are the resulting equations 

of motion? 
– If we were to shake the bowl vertically at frequency ω, such that the gravitational acceleration 

became g(t) = g + g0 cos(ωt)? for some quantity g0, what would the resulting equation of motion 
be, and what would be the solution to that equation of motion? 
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