
      

              
               

    

 

  
 

   

   

          

  

 
 

       
       

 

 

 
        

 
         

  

             

         

 
             

Massachusetts Institute of Technology MITES 2017–Physics III 

Solutions 4: Coupled Oscillations and Fourier Series 

Preface: In this assignment, we practice solving di�erential equations, studying the nonlinear properties of 
the pendulum. practice computing the properties of coupled oscillator systems, and use Fourier Series to 
derive an identity for π2. 

1. (10 points) Third-order di�erential equation 
We want to find the three possible solutions (and ultimately the general solution) to the di�erential 
equation 

d3 

x(t) + x(t) = 0. (1)
dt3 

We begin by guessing the solution 
x(t) = Aeαt . 

Inserting this solution into Eq.(1), we obtain the condition 

α3 + 1 = 0. (2) 

By an algebraic identity this equation can be reduced to 

α3 + 1 = (α + 1)(α2 − α + 1) = 0. (3) 

From the first expression in the parentheses, we find one solution is α0 = −1. The other two solutions 
can be found by using the quadratic formula on the quantity in the parentheses. Doing so, we find 
that the three solutions for α are 

√ √ 
1 − i 3 1 + i 3 

α0 = −1, α+ = , α+ = . (4)
2 2 

Therefore, given our original guess x(t) = Aeαt, we find that the three independent solutions are 

√ √ 
−t (1−i 3)t/2 (1+i 3)t/2 e , e , e . (5) 

Writing the general solution as a linear combination of these results we have 
√ √ 
3)t/2 + Ce(1+i 3)t/2 x(t) = Ae−t + Be(1−i , [Complex Solution] (6) 

for arbitrary complex constants A, B, and C. We can find the real solutions to Eq.(1) by taking the real 
part of Eq.(6). First defining A, B and C in terms of their real and imaginary parts we have 

A = A1 + iA2, B = B1 + iB2, C = C1 + iC2. (7) 

Using the identity 
Re [(a1 + ia2)(b1 + ib2)] = a1b1 − a2b2, (8) 

we then find that the real part of Eq.(6) given the definitions in Eq.(7) is � �√ √ −t t/2 x(t) = A1e + e B0 cos(t 3/2) + C0 sin(t 3/2) , [Real Solution] (9) 
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where A1 is real and we defined the real constants B0 ≡ B1 + C1 and C0 ≡ B2 − C2. 
� 

2. Corrections to Pendulum Period 

(a) (10 points) We want to find an integral expression for the exact period of a pendulum which 
begins at rest from an arbitrary angle. If the pendulum has an amplitude of θ0 then the energy of 
the system is 

E0 = mg`(1 − cos θ0). (10) 

In general, the energy of the pendulum swinging with angular velocity θ̇ and at an angle θ is 

E =
1 
m`2θ̇2 + mg`(1 − cos θ) (11)

2 

By conservation of energy, we have E0 = E, or 

mg`(1 − cos θ0) = 
1 
m`2θ̇2 + mg`(1 − cos θ). (12)

2 

Solving this equation for θ̇, we obtain r p2g
θ̇ = cos θ − cos θ0, (13)

` 

where the sign of the root is taken to be positive, in order to be consistent with out later integration 
from 0 to θ0. The period of the pendulum is 4× the amount of time it takes the bob to go from 0 
to θ0. So, with the fact that θ̇ = dθ/dt and that 

dt 
=

1 
, (14)

dθ θ̇ 

we find the period of the pendulum is Z T/4 Z θ0 
Z θ0dt dθ 

dt = dθ = . (15)
dθ θ̇0 0 0 

Given Eq.(13), we thus obtain Z θ0 dθ 
T = 4 

θ̇0s 
` 

Z θ0 dθ 
= 4 √ 

2g 0 cos θ − cos θ0 s Z θ08` dθ 
= √ . (16) 

g 0 cos θ − cos θ0 

(b) (10 points) In this part, we want to express Eq.(16) in such a way that the |θ0| � 0 approximation p
clearly leads to the small-angle result T ' 2π `/g. Using the identity cos θ = 1 − 2 sin2(θ/2), 
Eq.(16) becomes s 

2` 
Z θ0 1 

T = 2 q dθ. (17) 
0g sin2(θ0/2) − sin2(θ/2) 

2 



            
 

    
   

 
    

   
   

 
  

         
 

 
 

   
 

   
    

       
  

  
   

      

        
 

 

    

  
 

  
 

 
 

     
 

  
  

     
   

    

    
   

 
     

 

 

 
   

      
  

 

 

Changing variables to sin x = sin(θ/2)/ sin(θ0/2), we find that x = π/2 when θ = θ0/2 and x = 0 
when θ = 0. We also find that the di�erential element in Eq.(17) transforms as 

2 sin(θ0/2) cos x 
dθ = dx 

cos(θ/2)q 
2 sin2(θ0/2) − sin2(θ/2) 

= q dx, (18) 
1 − sin2(θ/2) 

where, to obtain the second line, we used the identity s p sin2(θ/2) 
cos x = 1 − sin2 x = 1 − . (19)

sin2(θ0/2) 

Thus, Eq.(17) becomes s 
2` 

Z π/2 1 2 
q 
sin2(θ0/2) − sin2(θ/2) 

T = 2 q q dx 
0g sin2(θ0/2) − sin2(θ/2) 1 − sin2(θ/2) s Z π/2` 1 

= 4 q dx. (20) 
0g 1 − sin2(θ0/2) sin

2 x 

Now, given the Taylor series 
(1 + x)n = 1 + nx + O(x 2), (21) 

we can approximate Eq.(20), for sin2 θ0 suÿciently small, as s Z π/2 � � 
T = 4 

` 
1 + 

1
sin2 θ0 sin

2 x + · · · dx 
g 20 s � � 
` π θ0

2 π 
= 4 + + · · · . (22) 

g 2 2 4 

Where we used the approximation sin θ0 ' θ0 and the integral Z π/2 Z π/2 

sin2 x dx =
1 

(1 − cos(2x)) dx = 
π (23)

2 20 0 

in the final line. Factoring out a π/2 from inside the parentheses in the final line of Eq.(22), we 
find which becomes s � 

2 � 
` θ0T = 2π 1 + + · · · , (24) 
g 16 

the desired result. 

� 

3. (15 points) Two coupled oscillators 

We want to find the most general solutions to the equations of motion for x1 and x2. We will find 
these general solutions for the given coordinate variables, by first finding the general solutions for the 

3 



      

     

      

    

  

    

  
 

   

     

   

 
        

  

   
 

 
 

     

    
 

  

 
    

 
 

  
    

 
 

  

Figure 1 

equations of motion of Xcm and R. 
First, writing down the equations of motion for this system, we have 

m1ẍ 1 = −k(x2 − x1) (25) 
m2ẍ 2 = +k(x2 − x1). (26) 

Adding these two equations, gives us 

m1ẍ 1 + m2ẍ 2 = 0, (27) 

which, by the definition of Xcm as Xcm = (m1x1 + m2x2)/(m1 + m2), implies 

¨ Xcm = 0. (28) 

Since Xcm has zero acceleration, it represents a position which moves uniformly in space. Therefore, 
we know (either by integrating Eq.(28) twice or by our understanding of kinematics) 

Xcm(t) = Xcm(0) + Vcmt. (29) 

Now, we will find the general solution to the equation of motion of R. Given the system of equations 

m1x1 + m2x2
Xcm = (30) 

m1 + m2 

R = x2 − x1, (31) 

we can solve for x1 and x2. Multiplying the first equation by (m1 +m2)/m1 and adding it to the second 
equation, we find � � 

m1 + m2 m2
Xcm + R = 1 + x2, (32) 

m1 m1 

or 
x2 = Xcm + 

µ 
R. (33) 

m2 

and with x1 = x2 − R we find 
x1 = Xcm − 

µ
R (34) 

m1 

¨Inserting these representations of x1 and x2 into Eq.(25) and Eq.(26) (and using Xcm = 0), we find, 
respectively, � � 

¨ −µR = kµ 
1

+
1 

R (35) 
m2 m1� � 

¨ +µR = −kµ 
1

+
1 

R, (36) 
m2 m1 
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which are the same equation of motion. We thus have 

¨ R + 
k
R = 0, (37) 

µ 

which has the general solution 
R(t) = Ramp. cos(ω0t − φ), (38) 

where s s 
k k(m1 + m2)

ω0 = = . (39) 
µ m1m2 

Thus, with Eq.(29) and Eq.(38), Eq.(34) and Eq.(33) become 

x1(t) = Xcm(0) + Vcmt − 
m2 

Ramp. cos(ω0t − φ) (40) 
m1 + m2 

m1 
x2(t) = Xcm(0) + Vcmt + Ramp. cos(ω0t − φ), (41) 

m1 + m2 

which are the general solutions to the original system of equations of motion. These equations state 
that the coupled mass system has a center of mass which moves uniformly at a speed Vcm while the 
two masses oscillate in an accordion-like fashion. Considering limit cases, for m1 � m2, x1 reduces 
to uniform motion with no oscillation. This makes sense since a very heavy mass would not be too 
a�ected by the dynamics of a much lighter mass which is coupled to it by a spring. Also, in this p
limit the frequency of oscillation of the lighter mass reduces to k/m2 because the larger mass acts 
e�ectively like a fixed wall. 

� 

4. Three coupled masses 

Figure 2 

(a) (15 points) Our objective is to find the normal modes and normal frequencies of the motion. 
Writing down the equation of motion as a matrix equation, we have ⎛ 

ẍ1 ⎝ ẍ2 

ẍ3 

⎞ ⎛ 
−2ω2 

0⎠ = ⎝ ω2 
0 
0 

ω2 
0 

−2ω2 
0 

ω2 
0 

0 
ω2 
0 

−2ω2 
0 

⎞ ⎛ ⎠ ⎝ x1 

x2 

x3 

⎞ ⎠ , (42) 

p
where ω0 = k/m. With the guess ⎛ ⎝ x1 

x2 

⎞ ⎛ 
A ⎠ = ⎝ B 

⎞ 
αt⎠ e , (43) 

x3 C 

5 
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we have the eigenvalue-eigenvector equation ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
2 2−2ω0 ω0 0 A A ⎝ ω2 −2ω2 ω2 ⎠⎝ B ⎠ = α2 ⎝ B ⎠ , (44)0 0 0 

ω2 20 −2ω0 C C0 

or ⎛ ⎞⎛ ⎞ 
−2ω0

2 − α2 ω2 0 A0⎝ 2 2 − α2 2 ⎠⎝ Bω0 −2ω0 ω0 
⎠ = 0. (45) 

0 ω0
2 −2ω0

2 − α2 C 

To find the value of α2, which leads to non-trivial normal mode solutions we set the determinant 
of the 3 × 3 matrix to zero. Doing so, we find 

−2ω0
2 − α2 ω2 00 

0 = ω2 −2ω0
2 − α2 ω2 

0 0 
2 2 − α20 ω0 −2ω0 � �

2 2 2 = −(2ω0 + α2) (2ω0 + α2)2 − ω4 − ω0
2(−(2ω0 + α2)ω0

2)0 � �
2 2 = −(2ω0 + α2) (2ω0 + α2)2 − 2ω4 . (46)0 

Thus, the possible values of α2 (denoted α2
1, α2, and α2) are 2 3 

α2 = −2ω2 
1 0 √ 

α2 = −(2 − 2)ω2 
2 0√ 

2α2 = −(2 + 2)ω0 .3 

Given the original guess Eq.(43), each of these values of α2 is associated with a specific frequency 
(termed the normal mode frequency) of the system. The possible normal mode frequencies are 

√ 
ω1 = ω0 2 q √ 
ω2 = ω0 2 − 2 q √ 
ω3 = ω0 2 + 2. 

Now we need to find the coeÿcients A, B, and C associated with the above values of α2. We find 
these coeÿcients by solving Eq.(45) for each α2. 

2For α1 = −2ω0
2, Eq.(45) becomes ⎛ ⎞⎛ ⎞ 

0 ω2 0 A0⎝ ω2 0 ω2 ⎠⎝ B ⎠ = 0., (47) 0 0 
20 ω0 0 C 

which implies A = −C and B = 0. Thus we have the normal mode ⎛ ⎞ 
1 √ 

v1 = ⎝ 0 ⎠ for frequency ω1 = ω0 2. (48) 
−1 

6 



     

    
    

           
     

    

 
  

   
 

      
 

 
 

    

    
  
     

          
    

    

 
  

           
 

 
  

         
 

 
  

   
 

      
 

 
 

 
  

   
 

      
 

 
 

  
  

                     
  

 
 

   
 

    
 

   
 

√
For α2 = −(2 − 2)ω2, Eq.(45) becomes 2 0 ⎛ √ ⎞⎛ ⎞ 

− 2ω2 ω2 0 A0 √0 ⎝ ω2 − 2ω2 ω2 ⎠⎝ B ⎠ = 0., (49)0 0 √0 
2 20 ω0 − 2ω0 C 

√
which implies A = B/ 2 = C. Thus we have the normal mode ⎛ ⎞ 

1 q √⎝ √ 
v2 = 2 ⎠ for frequency ω2 = ω0 2 − 2. (50) 

1 

√
For α2 = −(2 + 2)ω2, Eq.(45) becomes 2 0 ⎛ √ ⎞⎛ ⎞ 

2ω2 ω2 0 A0 √ 0 ⎝ ω2 2ω2 ω2 ⎠⎝ B ⎠ = 0., (51)0 0 √ 0 
2 20 ω0 2ω0 C 

√
which implies A = −B/ 2 = C. Thus we have the normal mode ⎛ ⎞ 

1 q 
v3 = ⎝ −√ 

2 ⎠ for frequency ω2 = ω0 2 + 
√ 
2. (52) 

1 

In summary, we have the following normal mode-frequency pairs ⎛ ⎞ 
1 √ 

normal mode: v1 = ⎝ 0 ⎠ normal mode frequency: ω1 = ω0 2 (53) 
−1 ⎛ ⎞ 
1 q √⎝ √normal mode: v2 = 2 ⎠ normal mode frequency: ω2 = ω0 2 − 2 (54) 
1 ⎛ ⎞ 
1 q 

normal mode: v3 = ⎝ −√ 
2 ⎠ normal mode frequency: ω3 = ω0 2 + 

√ 
2 (55) 

1 

(b) (5 points) Given the above listed normal mode-frequency pairs, we find that the general solution 
for the equation of motion of this system is ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 

x1 1 1√ √ √⎝ x2 ⎠ = A1 ⎝ 0 ⎠ cos( 2ω0t − φ1) + A2 ⎝ 2 ⎠ cos((2 − 2)ω0t − φ2) 
x3 −1 1 ⎛ ⎞ 

1 
+ A3 ⎝ −√ 

2 ⎠ cos((2 + 
√ 
2)ω0t − φ3). (56) 

1 
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5. (15 points) The Strogatz Sync 

Figure 3 

Our goal is to develop a physical model of Strogatz’s system using the scenario depicted in Fig. 3. 
Through the model we hope to explain why the symmetric mode (i.e., the x1 = x2 mode) remains, 
while all anti-symmetric motion decays away. 
The equations of motion for the system in the figure are 

mẍ 1 = −kx1 + kM (x2 − x1) + b(ẋ2 − ẋ 1) (57) 
mẍ 2 = −kx2 − kM (x2 − x1) − b(ẋ2 − ẋ 1). (58) 

Dividing by m and adding and subtracting these equations gives us, respectively, 

2 ẍ + = −ω0 x+ (59) 
2 ẍ − = −ω1 x− − 4γẋ − (60) 

where we defined x+ ≡ x2 + x1 and x− ≡ x2 − x1 and 

b k 2 k + 2kM
γ = , ω2 = , ω1 = . (61)02m m m 

Both Eq.(59) and Eq.(60) are equations of motion we have encountered before. They are the simple 
harmonic oscillator and the damped oscillator equation of motion respectively. Given that our system 
is oscillating we will assume the damped equation of motion has parameters in the underdamped 
regime. 
The general solution to Eq.(59) is 

x+(t) = A+ cos(ω0t − φ+) (62) 

and the general solution to Eq.(??), for underdamped motion, is 

x−(t) = A−e −2γt cos(Ωt − φ−), (63) 

where q 
Ω ≡ 3ω2 − 2γ2 , (64)1 

and A± and φ± are arbitrary constants. Given our definitions of x+ and x−, we have 

x+ + x− x+ − x− 
x2 = , x1 = . (65)

2 2 

Therefore the general solutions for x1 and x2 (i.e., the solutions with arbitrary initial position and 

8 



            

           

  

   
           
  

   

   

 

   
     

 

 

 

  

    
       

   

 

    
       

 

velocity) are 

x1 = A+ cos(ω0t − φ+) − A−e −2γt cos(Ωt − φ−) (66) 
x2 = A+ cos(ω0t − φ+) + A−e −2γt cos(Ωt − φ−), (67) 

where we reabsorbed the constants 1/2 into redefinitions of A+ and A−. Writing this solution in matrix 
notation we have � � � � � � 

x1(t) 1 −2γt −1 
= A+ cos(ω0t − φ+) + A−e cos(Ωt − φ−). (68)

x2(t) 1 1 

We note that having arbitrary positions and velocities simply means our arbitrary constants in Eq.(68) 
are not specified. We thus see the general motion is a linear combination of two types of motion: 
one motion where x1 = x2 and the masses move in the same direction with the same amplitude (i.e., 
symmetric or ”in-sync” motion); and one motion where x1 = −x2 and the masses move in opposite di-
rections with the same amplitude (i.e., antisymmetric motion). The second term in Eq.(68) represents 
the antisymmetric motion, and thus from this general solution we see that over time the antisymmetric 
motion decays to zero and all we have left is the symmetric, in-sync, motion. 
Physically, the reason this occurs is that the dashpot exerts a retarding force on the masses whenever 
they are oscillating in opposite directions. There is no such force when the masses are oscillating with 
the same direction and same amplitude, so over time the motion which pushes against the retarding 
force is damped away. In the real system shown in the video, the it is the platform upon which the 
metronomes stand that exerts the retarding force. Similar to the dashpot in the model, the platform 
exerts a frictional force on the metronomes whenever the metronomes are oscillating in opposite di-
rections. It is possible to study this model more precisely using numerical methods (See [?]), but for 
small oscillation amplitudes the results are essentially those given in Eq.(68). 
Now to estimate how much time it would take the system to be in sync, we can estimate how much 
time it takes the antisymmetric motion to damp away. As an order of magnitude estimate, we can say 
the antisymmetric mode is no longer relevant when its amplitude is about 1/10 of its original value 
(the exact fraction doesn’t matter here as long as it is indeed a fraction and not a whole number). 
Computing the time it takes to reach this value, we have 

ln 10 m 
t1 ≈ = ln 10. (69)

2γ b 

From this time estimate and the video, we can estimate the value of γ, and thus determine the e�ective 
damping and oscillation 

� 

6. Fourier Series 

(a) (10 points) We want to determine the values of αn and βn, given the initial conditions stated 
in the prompt. Because the string begins at rest, we know that its initial velocity ẏ(x, 0) is zero. 
Therefore, by Eq. (48) of Lecture notes 07, Z L � �2 nπx 

βn = dx ẏ(x, 0) sin , (70)
Lωm 0 L 

we have βn = 0. By Eq. (47) of Lecture notes 07, we have Z L � �2 nπx 
αn = dx y(x, 0) sin . (71)

L L0 
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Given the equation for y(x, 0), we then obtain Z L/2 � � Z L � �2 nπx 2 nπx 
αn = dx x sin + dx (L − x) sin . (72)

L L L L0 L/2 

making the change of variables x = L − u in the second term gives us 

� � �2 
Z L/2 nπx 2 

Z 0 �nπ 
αn = dx x sin − du u sin (L − u)

L L L L0 L/2 Z L/2 � � Z L/2 � �2 nπx 2 nπu 
= dx x sin + du u sin nπ − 

L L L L0 0Z L/2 � � Z L/2 � �2 nπx 2 nπu 
= dx x sin − cos(nπ) du u sin 

L L L L0 0Z L/2 � �2 nπx 
= (1 − cos(nπ)) dx x sin . (73)

L L0 

Now, using the identity Z � �x2x2 

dx x sin(αx) = − 
x 
cos(αx) + 

1 
sin(αx) , (74) 

x1 
α α2 

x1 

we find � �2 � �2 
" 

L2 �nπ 
� 

L nπ 
# 

αn = (1 − cos(nπ)) − cos + sin . (75)
L 2nπ 2 nπ 2 

The first term in the brackets is only non-zero for n even. But the coeÿcient (1 − cos(nπ)) is 
only non-zero for n odd. Thus, we can ignore the first term in the brackets. For n odd we have 
1 − cos(nπ) = 1 − (−1) = 2, thus we find � �4L nπ 

αn = sin , (76)
(nπ)2 2 

and y(x, t) given the initial conditions is 

∞X � � � �4L nπ nπx 
y(x, t) = sin cos (ωnt) sin , (77) 

(nπ)2 2 L 
n=1 

where ωn = nπv/L. 
(b) Extra credit (10 points): By Eq. (57) in the lecture notes, we have 

∞ 
L X µ

Etot = (α2 
n + β2 )ωn 

2 . (78)n2 2 
n=1 

By the definition of the energy of a string, we have the more general formula " #Z L � �2 � �2
1 ∂y ∂y 

Etot = dx T + µ . (79)
2 ∂x ∂t 0 

10 



   

 
      

    
        

 
        

  
       

  

      
     

           
     

  

  
      

  

 
 

 
 

 
 
   

 
 
 

 
 

   
   

   
 

       
   

 

     
  

  
 

   
 
 

    

     
  

 

 

At t = 0, the string is at rest and y(x, t) is ( 
x for 0 ≤ x ≤ L/2 

y(x, 0) = . (80)
L − x for L/2 ≤ x ≤ L 

Thus, we have ( 
∂y(x, 0) 1 for 0 ≤ x ≤ L/2 

= . (81)
∂x −1 for L/2 ≤ x ≤ L 

So by Eq.(79), the energy of the string at t = 0 is #�Z L �2 
"Z L/2 Z L1 ∂y T TL µv2L 

Etot = dx T = dx (1)2 + dx (−1)2 = = , (82)
2 ∂x 2 2 20 0 L/2 

2where we used v = T/µ. 
Given our previous results � �4L nπ 

αn = sin , and βn = 0, (83)
(nπ)2 2 

we thus find 
∞XL µ 2 2Etot = (αn + βn 

2 )ωn2 2 
n=1 X∞ � �L µ 16L2 nπ 

= sin2 ω2 
n2 2 (nπ)4 2 

n=1 X � �2∞ �� 1 nπ nπv 
= 4µL3 sin2 

(nπ)4 2 L 
n=1 
∞X 1 �nπ � 

= 4µLv2 sin2 

(nπ)2 2 
n=1 

∞X 1 
= 4µLv2 

n2π2 
, (84) 

n=odd#s 

where in the final line we used the fact that sin2(nπ/2) = 1 for n odd and is zero otherwise. 
Equating this to result Eq.(82), we find 

∞2L Xµv 1 
= 4µLv2 , (85)

2 n2π2 
n=odd#s 

which when multiplied by π2/4µLv2 leads to the desired identity. 

� 

11 



 

 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

Resource: Introduction to Oscillations and Waves 
Mobolaji Williams 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu



