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Massachusetts Institute of Technology MITES 2017–Physics III 

Solutions 5: Fourier Series and Wave Equations 

Preface: In this assignment, we build a better understanding of Fourier Series and derive various wave 
equations. 

1. (15 points) Fourier Series identities 

We begin by computing the first integral. Using the given identity we find � � � � ��Z L � � � � Z Lnπ mπ 1 (n − m)π (n + m)π 
cos x cos x dx = cos x + cos x dx (1)

L L 2 L L0 0 

when n = m, we have � � ��Z L � � � � Z Lmπ mπ 1 2mπ 
cos x cos x dx = 1 + cos x dx 

L L 2 L0 0 � � 
LL L 2mπ L 

= + sin x = , (2)
2 2mπ L 0 2 

where we used the fact that sin(2mπ) = 0 for all integers m. 
For n 6= m, we have Z L Z L � � � � ��� � � �nπ mπ 1 (n − m)π (n + m)π 

cos x cos x dx = cos x + cos x dx 
L L 2 L L0 0� � � � ��L

1 L (n − m)π L (n + m)π 
= sin x + sin x 
2 (n − m)π L (n + m)π L 0 

= 0. (3) 

Thus we can infer Z L � � � �nπ mπ L 
cos x cos x dx = δnm. (4)

L L 20 

Similarly, for the second integral we have Z L � � � � � ��� Z L� nπ � mπ 1 (n − m)π (n + m)π 
sin x cos x dx = sin x + sin x dx (5)

L L 2 L L0 0 

when n = m, we have � � ��Z L � � � � Z Lmπ mπ 1 2mπ 
sin x cos x dx = sin x dx 

L L 2 L0 0 � � 
LL 2mπ 

= cos x = 0, (6)
2mπ L 0 

where we used the fact that cos(2mπ) = 1 for all integers m. 
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For n 6= m, we have Z L � � � � ��Z L � � � �nπ mπ 1 (n − m)π (n + m)π 
sin x cos x dx = sin x + sin x dx 

L L 2 L L0 �0 � � � ��L
1 L (n − m)π L (n + m)π 

= cos x + cos x ,
2 (n − m)π L (n + m)π L 0 

(7) 

Reducing the term in the brackets, we find � � � � 
L (n − m)π L (n + m)π 

cos x + cos x 
(n − m)π L (n + m)π L h � � � � � � � �L nπ mπ nπ mπ 

= (n + m) cos x cos x + (n + m) sin x sin x 
(n2 − m2)π L L L L� � � � � � � �inπ mπ nπ mπ 

+(n − m) cos x cos x − (n − m) sin x sin x 
L L L Lh � � � � � � � �i2L nπ mπ nπ mπ 

= n cos x cos x + m sin x sin x , (8)
(n2 − m2)π L L L L 

which yields, upon re-substitution into Eq.(7), 

Z L � � � � h ih inπ mπ nL 
sin x cos x dx = (−1)n+m − 1 1 − δnm (9)

L L (n2 − m2)π0 

where we used sin(mπ) = 0 and cos(mπ) = (−1)m for all integers m. We note that the final expression 
contains the factor [1−δnm] which is only non-zero for n =6 m. Given the fact that [(−1)n+m −1] is itself 
only non-zero when n 6= m (in particular when either n or m is odd), the factor [1 − δnm] is redundant 
and can thus be excluded from the final expression. 
Note: Eq.(9) is actually not one of the main identities of Fourier Series, but it is worth calculating to note 
that not all integrations of trigonometric functions over the domain 0 to L yield a simple Kronecker 
delta. The identity as it is typically quoted involves an integration over an even domain, yielding R L/2 � � � � 

nπ mπsin x cos x dx = 0.−L/2 L L 

� 

2. Summing Fourier Series 

Soultion: Online 

3. Fourier Series with new Boundary Conditions 

(a) (10 points) Applying separation of variables to the wave equation 

∂2y(x, t) 2 ∂
2y(x, t) 

= v , (10)
∂t2 ∂x2 

we found the general solution (with boundary conditions unspecified) � �� � 
y(x, t) = A cos(ωt) + B sin(ωt) C cos(kx) + D sin(kx) , (11) 
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where ω = kv. The boundary conditions for a string with free ends are 

∂
y(x = 0, t) = 0, 

∂
y(x = L, t) = 0. (12)

∂x ∂x 

Imposing these boundary conditions on Eq.(44) we find 

∂ 
0 = y(x = 0, t)

∂x� � 
= A cos(ωt) + B sin(ωt) Dk, (13) 

implying D = 0, and 

∂ 
0 = y(x = L, t)

∂x� � 
= − A cos(ωt) + B sin(ωt) Ck sin(kL), (14) 

implying sin(kL) = 0. Thus we find that kL can be 0 or any positive integer n. We then have the 
wave number 

kn = 
nπ 

, for n = 0, 1, 2, . . .. (15)
L 

We can have n = 0 in this case because cos(0) = 1 yields a constant solution which is not neces-
sarily zero and hence not trivial. Summing all possible solutions, given Eq.(??) and the value of 
D, we have 

∞X 
y(x, t) = yn(x, t) 

n=0 

∞ � �X
= An cos(ωt) + Bn sin(ωt) Cn cos(knx) 

n=0 

∞ h i � �X
= αn cos(ωnt) + βn sin(ω)nt cos 

nπ
x , (16)

L 
n=0 

where we redefined the arbitrary coeÿcients in our summation and took 

ωn = 
nπv 

. (17) 
L 

Separating the n = 0 term of the summation, we find 

∞Xh i � nπ � 
y(x, t) = α0 + αn cos(ωt) + βn sin(ωt) cos x . (18)

L 
n=1 

The first term in Eq.(18) di�ers from the equation quoted in the prompt by a factor of 1/2. This 
factor of 1/2 is needed in order for the equation defining the coeÿcient for αm when m ≥ 1 to 
match the equation for αm when m = 0. In anticipation of this result we will replace α0 with 
α0/2, later checking that this replacement yields a value for αm that is consistent for all m from 0 
to ∞. Thus we postulate the conventional form of the solution 

∞ i � �Xh nπ 
y(x, t) = 

α0 
+ αn cos(ωt) + βn sin(ωt) cos x . (19)

2 L 
n=1 
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(b) (5 points) With Eq.(19), we are now tasked with determining αn and βn. First, computing y(x, 0) 
and ẏ(x, 0) we have 

∞ � �Xα0 nπ 
y(x, 0) = + αn cos x (20)

2 L 
n=1 

∞ � �X 
ẏ(x, 0) = βnωn cos 

nπ
x . (21)

L 
n=1 

Let’s begin by determining α0. Given Eq.(4), we know that integrating Eq.(20) from 0 to L would 
eliminate all the terms in the sum. So we have Z L Z L 

y(x, 0) dx = 
α0 

dx = α0 
L
. (22)

2 20 0 

For αm, we can again use Eq.(20). Multiplying both sides of Eq.(20) by cos(mπx/L), and integrat-
ing from 0 to L, we obtain " #Z L Z L ∞� � X � � � �mπ α0 nπ mπ 

y(x, 0) cos x dx = + αn cos x cos x dx 
L 2 L L0 0 n=1 

∞ Z LX � � � �nπ mπ 
= αn cos x cos x dx 

L L0n=1 

∞X 
= αn 

L
δnm = αm 

L
, [For m = 1, 2, . . .] (23)

2 2 
n=1 

where we used Eq.(4) in the last two lines. Applying an identical procedure to Eq.(21), we obtain 

Z L � � 
βm =

2 
ẏ(x, 0) cos 

mπ
x dx. [For m = 0, 1, . . .] (24)

L L0 

Consolidating Eq.(22) and Eq.(23), similarly yields 

2 
Z L � mπ � 

αm = y(x, 0) cos x dx. [For m = 0, 1, . . .] (25)
L L0 

Thus we see why the factor of 1/2 was important in Eq.(19); it allowed us to combine the equations 
defining α0 and αm≥1 into the single result Eq.(25). 

(c) (10 points) Since the string begins from rest, we know that that ẏ(x, 0) = 0 and thus by Eq.(24), 
βm = 0. To determine αn, we apply Eq.(25) given the y(x, 0) in the prompt. We find 

2 
Z L � mπ � 

αm = y(x, 0) cos x dx 
L L"0 #Z L/2 � � Z L � �2 L mπ L mπ 

= cos x dx − cos x dx 
L 2 L 2 L0 L/2 Z L/2 � � Z 0 � �mπ mπ 

= cos x dx + cos mπ − u du 
L L0 L/2 Z L/2 � � Z L/2 � �mπ mπ 

= cos x dx − cos(mπ) cos u du, (26)
L L0 0 
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where in the second to last line we implemented the change of variables u = L − x. Simplifying 
this final line gives us Z L/2 � mπ � 

αm = (1 − cos(mπ)) cos x dx 
L0 

L � mπ � L/2 

= (1 − cos(mπ)) sin x 
mπ L 0� � 

= (1 − cos(mπ)) 
L 
sin 

mπ 
. (27) 

mπ 2 

For m = 0, Eq.(27) gives us α0 = 0. Also, for all even integers m, we have 1 − cos(mπ) = 0, which 
is fine because sin(mπ/2) is also zero for even m. But for m odd, we have 1 − cos(mπ) = 2. Thus 
our final result for αm is � �2L mπ 

αm = sin , (28)
mπ 2 

and thus y(x, t) is 
∞X � � � �2L 1 nπ nπ 

y(x, t) = sin cos(ωnt) cos x , (29)
π n 2 L 

n=1 

with ωn = nπv/L. 
(d) (Extra credit) (5 points) Given the initial condition in the prompt, we know y(0, 0) = L/2. Insert-

ing x = 0 and t = 0 into Eq.(29), we find 

X∞ � �L 2L 1 nπ 
= sin 

2 π n 2 
n=1 

∞ � �Xπ 1 nπ 
= sin 

4 n 2 
n=1 

∞ n−1X (−1) 
= 

2 

, (30) 
n 

n=1,3,5,... 

where we used the property ⎧ ⎪1 for n = 1, 5, 9, . . .� � ⎨nπ n−1 

sin = −1 for n = 3, 7, 11, . . . = (−1) 2 , (31)
2 ⎪⎩

0 for n = 2, 4, 6 . . . 

in the final line. 

� 

4. String Wave Equation with Gravity 

(a) (10 points) Following the derivation in the notes, in the ` R � a limit the mass j in the presence 
of a gravitational field has the equation of motion 

mÿ j = Fj+1 on j, y + Fj−1 on j, y = k(yj+1 − yj ) − k(yj − yj−1) − mg. (32) 

5 



   

                     

 
        

   

  

  
                       
      

               
       

  
 

               
       

    

     

  

      
   

  

  
  

  

      
 

 
 

       

Figure 1: String in a gravitational field 

Taking the continuum limit by promoting the yj (t) to y(x, t), we have 

mÿ(x, t) = k (y(x + a, t) − y(x, t)) − k (y(x, t) − y(x − a, t)) − mg. (33) 

Next, using the definitions 
m 

T = lim ka, µ = lim . (34) 
a→0 a→0 a 

we can divide Eq.(54) by a, taking the limit as a → 0, to then find 

m k m 
lim ÿ(x, t) = lim [(y(x + a, t) − y(x, t)) − (y(x, t) − y(x − a, t))] − lim g 
a→0 a a→0 a a→0 a� � 

1 y(x + a, t) − y(x, t) y(x, t) − y(x − a, t) 
µ ÿ(x, t) = lim ka − − µg 

a→0 a a a� � 
1 y(x + a, t) − y(x, t) y(x, t) − y(x − a, t) 

= lim ka · lim − − µg 
a→0 a→0 a a a 

= Ty00(x, t) − µg (35) 

Replacing the dots with primes, we can write Eq.(55) as 

∂2 T ∂2 
y(x, t) = y(x, t) − g, (36)

∂t2 µ ∂x2 

which is equation of motion for a vibrating string in a gravitational field. 
(b) (5 points) 

To determine the configuration of a string in a gravitational field, we need to solve (??) in the time 
independent case. Specifically, we need to solve 

d2y(x) µg 
= . (37) 

dx2 T 

subject to the appropriate boundary conditions. The general solution of Eq.(37) is 

2 y(x) = y0 + y1x + 
µg 

x (38)
2T 

For a string attached to two walls the boundary conditions are set at each endpoint. The specific 
boundary conditions we need are 

y(x = 0) = y(x = L) = 0, (39) 

6 
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where L is the horizontal distance between the two endpoints. Thus, we find 

µg 
y(0) = y0 = 0, y(L) = y1L + L2 , (40)

2T 

which implies y1 = −µgL/2T . 
Inserting the above values into Eq.(38), we find that the specific solution to Eq.(37) is 

µg 
y(x) = x(x − L). (41)

2T 

From this result we can make some simple consistency checks and calculate an interesting re-
sult. First, from symmetry we know that the slope of the string at each endpoint has the same 
magnitude. By calculating derivatives at each endpoint, we find this to be true of our model: 

y 0(x = 0) = − 
µgL 

= −y 0(x = L), (42)
2T 

Also, we know that the string should have zero slope in its center. This is also found to be true: 

µg L µg 
y 0(x = L/2) = 2 − L = 0. (43)

2T 2 2T 

We see our solution (37) passes the simple consistency checks. 
As an aside, we can note that the general solution to Eq.(36) is a sum of the equilibrium solution 
(Eq.(41)) and the standard Fourier series solution we derived previously: 

∞ h i � �Xµg nπ 
y(x, t) = x(x − L) + αn cos(ωnt) + βn sin(ωnt) sin x (44)

2T L 
n=1 

Thus, Eq.(44) represents wave motion on top of the parabolic curve 
(c) (5 points) An interesting quantity we can calculate from this result is the angle the endpoints of 

the rope make with the vertical. This is computed easily using the derivative of the string and 
some simple trigonometry. Given the way we defined θ in the figure, we have 

tan θ = lim 
Δx 

=
1 

. (45)
Δy Δy x=0,L y0(x) x=0,L 

Therefore, the angle the string makes with the vertical is given by 

2T 2T 
tan θ = = , (46)

µLg Mg 

where we defined M ≡ µL as the total mass of the string. We note we could use this result (and ap
scale) to determine the tension in a hanging string, and, through v = T/µ, the speed of waves 
traveling through the string. 
Eq.(46) reproduces the expected physical limits. For example, if we take the tension to infinity 
(the equivalent of pushing the walls very far apart) we find that the string is approximately a 

πhorizontal line, θ ' . If we make the string extremely loose and take the tension to zero (the 2 
equivalent of pushing the walls very close together) we find that the string roughly folds into two 
straight lines, θ = 0. 

� 

7 



   

  
   

  

        
       

  

        
  

    
     

        
   

   

 
   

        
    

 

   

        
  

   
            

     

 
   

       
    

          
 

   
      

    
 

 
   

       
    

        

   
   

   
   

           
     

   
 

   

              
    

  
         

 

5. Nonlinear Wave Equation 

(a) (10 points) Following the derivation outlined in the notes, we find that the magnitude of the force 
on the j oscillator from the j + 1 oscillator is �q � 

~|Fj+1 on j | = k (yj+1 − yj )2 + a2 − ` R . (47) 

Resolving this magnitude into its y component, the force in the y direction is 

~Fj+1 on j, y = |Fj+1 on j | sin θj�q � 
(yj+1 − yj ) 

= k (yj+1 − yj )2 + a2 − ` R · p (48)
(yj+1 − yj )2 + a2 " # 

` R 1 
= k(yj+1 − yj ) 1 − p , (49) 

a 1 + (yj+1 − yj )2/a2 

By a similar argument, we can compute the force on the jth oscillator from the j − 1 oscillator. It 
is 

~Fj−1 on j, y = |Fj−1 on j | sin θj−1�q � 
(yj − yj−1) 

= −k (yj − yj−1)2 + a2 − ` R · p (50)
(yj − yj−1)2 + a2 " # 

` R 1 
= −k(yj − yj−1) 1 − p , (51) 

a 1 + (yj − yj−1)2/a2 

Thus the equation of motion for the jth oscillator is (by Newton’s 2nd) 

mÿ j = Fj+1 on j, y + Fj−1 on j, y " # 
` R 1 

= k(yj+1 − yj ) 1 − p
a 1 + (yj+1 − yj )2/a2 " # 

` R 1 − k(yj − yj−1) 1 − p . (52) 
a 1 + (yj − yj−1)2/a2 

Now, taking ` R = a and |yj − yj−1| � a for all j, we find " #� �−1/2 � � �� 
(yj − yj−1)2 1 (yj − yj−1)2 1 (yj − yj−1)2 

1 − 1 + = 1 − 1 − + · · · = + · · · (53) 
a2 2 a2 2 a2 

and so we can approximate the equation of motion as 

1 (yj+1 − yj )
2 1 (yj − yj−1)2 

mÿ j = λ(yj+1 − yj ) · − λ(yj − yj−1) · + · · · (54)
2 a2 2 a2 

Dropping the higher order terms while keeping the equality (as we would do in the standard 
derivation) gives us the equation of motion 

λ � � 
mÿ k =

2a2 
(yk+1 − yk)

3 − (yk − yk−1)
3 
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"� #�3 � �3
λa yk+1 − yk yk − yk−1 

= − 
2 a a "� �3 � �3 # 

m λa 1 yk+1 − yk yk − yk−1 
ÿ k = − . (55) 

a 2 a a a 

Taking a → 0, and defining µ ≡ m/a and T ≡ λa, and taking yk(t) → y(ka, t) = y(x, t) we obtain "� �3 # 
∂2y T ∂ ∂y 

µ = , (56)
∂t2 2 ∂x ∂x 

which clearly is a nonlinear wave equation for the string. To recap, the physical meaning of taking 
` R = a is to say that the string is loosely bound so that its rest state (and even perturbations about 
this rest state) have less tension than they do in the ` R � a case. 

(b) (5 points) Guessing the solution y(x, t) = Aei(kx−ωt) for Eq.(56), we find "� �3 # 
∂2y T ∂ ∂y 

µ = 
∂t2 2 ∂x ∂x 

?−µω2Aei(kx−ωt) = 
T 
Ak4 e 3i(kx−ωt). (57) 
2 

which suggests that y(x, t) = Aei(kx−ωt) is not a solution. Indeed, since y(x, t) = Aei(kx−ωt) is a 
linear combination of sine and cosine functions, no sinusoidal solution would solve Eq.(56). We 
could have anticipated this from the fact that the equation is nonlinear and thus is not soluble 
through the ”exponential guess and check” methods we previously employed. 
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