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Units/Dimensions and Limiting cases 

As part of any physics class you spend a lot of time answering questions, deriving physical results, and 
predicting the consequences of experiments both real and imagined. In short you do a lot of analytical 
work and thereby obtain equations which supposedly describe reality. But how can you be sure? Well, to 
be precise, it is impossible (even with apparent experimental confirmation) to be absolutely sure that our 
physical theories correspond to something truly fundamental about our world, but we can often perform 
simple logical checks without a laboratory to ensure that the associated results are not obviously wrong. 

In these notes we discuss two useful checks in this direction in addition to a more general heuristic 
for checking one’s work. The specific definitions of these checks are given here, but you won’t be missing 
anything if you first look at the example in the next section. 

Units/Dimensions Check: Since all physical quantities have units and dimensions1 any ex-
pression which represents a physical quantity must have the same units/dimensions as that 
quantity. This check uses this fact to ensure that an analytic expression has the correct physical 
units/dimensions. Taking “[A]” to stand for the units2 of A we have, 

If f(a1, . . . , aN ) represents the physical quantity F , then [F ] = [f(a1, . . . , aN )] (1) 

Limiting Case Check: This check rests on the idea that the mathematical result modeling a 
physical phenomena should have analytical properties which mirror the qualitative properties 
of the phenomena. Expressed mathematically, if we have an analytic function f (with parameters 
a1, . . . , aN which represents a physical quantity F , then we must have 

lim f(a1, . . . , aN ) = What we expect for F when ai = A. (2) 
ai→A 

If either of these checks fail (i.e., the expected limiting cases are not satisfied or [F ] 6= [f ]), then we know our 
result is incorrect. 

1 Example Application 

Both of these techniques are best illustrated through examples. We’ll consider one example here but there 
are many more in chapter 1 of [?] which can be found in the Physics Library on the fourth floor of Je�erson. 
We begin with the following problem statement: 

A time dependent force F (t) = F0e
−bt acts in the x direction on a mass m. The particle has an 

initial position x0 and an initial velocity of ẋ 0. The particle’s position x(t) is 

F0 F0 
x(t) = x0 + ẋ 0t + t + (e −bt − 1). (3)

bm b2m 

1. Units Check: Given that F0 has the units of force, b has the units of s−1, and m has the units 

1Dimensions are either Mass, Length, Time (or Charge). Units refer to quantities like Newton’s, Joules, etc. 
2In physics, [A] typically stands for the dimension of A, but we’ll only be considering units here so we appropriate this notation. 
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of kg, check that x(t) has the correct units. 

2. Limiting Cases Check: Consider x(t) in the limits of: 

(a) F0 → 0 

(b) m →∞ 

(c) b →∞ 

Do these limits of x(t) yield the expected analytic expressions? 

1.1 Units Check 

Recall that units refer to what is typically known as SI units (quantities like Newtons, Joule’s, Watts, etc.) 
while dimensions refer to the fundamental quantities length, mass, and time. Units can be expressed in 
terms of dimensions so we can check either the units or the dimensions of an equation; both must be con-
sistent across the equality for the equation to make sense. 

We will consider units here because that is what we typically use to express the physical nature of quan-
tities. We are trying to check the units of the equation 

F0 F0 
x(t) = x0 + ẋ 0t + t + (e −bt − 1). (4)

bm b2m 

The equation represents the position of a particle, and position has units of meters so for the left hand side 
of the equation we have h i 

x(t) = m. (5) 

This unit expression must be matched on the right hand side of the equation. Namely, we must find h iF0 F0 
x0 + ẋ0t + t + (e −bt − 1) = m (6)

bm b2m 

Transcendental functions like ex have no units, so demonstrating this unit equivalence amounts to showing 
that the quantities 

F0 F0 
x0 , ẋ 0t , t , 

b2m 
(7) 

bm 

have units of meters. 
The first quantity represents initial position, so the units are automatically manifest: h i 

x0 = m. (8) 

The next quantity is a velocity multiplied by a time, so we have h i h i h i 
ẋ0t = ẋ 0 × t = 

m × s = m, (9)s 

as we expect. By Newtons’ Second Law, force must have the same units as mass times acceleration. Thus 
the units of F0 are kg·m/s2. Also, because the argument of the exponential e−bt must not have any units 
(i.e., transcendental functions must be functions of real numbers alone), the units of b are s−1. The units of 
the final two terms in Eq.(3) are then h i h i h i h i h i1 1 1 1 

F0t/bm = × t × × = kg m × s × × = m (10)F0 
b m s2 s−1 kg 

2 



h i h i h 1 i h 1 i 1 1 
F0/b

2 m = F0 × × = kg m × × = m (11)
b2 m s2 s−2 kg 

In all we find Eq.(3) has the correct units. 

1.2 Limiting Cases 

To consider the limiting cases we apply Eq.(2) to investigate the various limits listed in the problem state-
ment. 

1. F0 → 0: If we take F0 → 0 then the force applied to the particle goes to zero, and we expect the particle 
to move with constant velocity in time. Taking this limit for Eq.(3) this expectation is confirmed. � � 

F0 F0
lim x(t) = lim x0 + ẋ 0t + t + (e −bt − 1) = x0 + ẋ 0t (12)

F0→0 F0→0 bm b2m 

2. m → ∞: If we take the particle’s mass m to infinity, then we expect a finite force F (t) to not change 
the particle’s velocity. Essentially, the particle would appear to not be acted upon a force at all, and 
we would again expect the particle to move with constant velocity in time. We indeed find this is the 
case: � � 

F0 F0
lim x(t) = lim x0 + ẋ 0t + t + (e −bt − 1) = x0 + ẋ 0t (13) 

m→∞ F0→0 bm b2m 

3. b → 0: In the function F (t) = F0e
−bt the parameter b acts as a time constant for the decaying-in-time 

force. Specifically τ = 1/b is the amount of time it takes the force to decay to 1/e of its initial value. If 
b → 0 then this decay time τ goes to infinity and the force never decays in time. In other words, it is 
simply a constant force. As a constant force, it gives the particle a constant acceleration and we expect 
the position as a function of time to have the form 

2 x(t) = 
? 
x0 + ẋ 0t + 

F0 
t . (14)

2m 

To check this result we focus on the final two terms in Eq.(3). Taking the limit and making use of the 
Taylor expansion of the exponential we find 

F0 F0 −bt − 1) = 
F0 F0 � 

1 b2 2 
� 

lim t + (e lim t + −bt + t + O(b3) 
b→0 bm b2m b→0 bm b2m 2 

F0 F0 F0 1 2 = lim t − t + t t + O(b)2b→0 bm bm m 
F0 2 = t , (15)
2m 

and so Eq.(14) is established. We note we could have obtained this result without an explicit Taylor 
expansion by applying L’hopital’s rule twice. 

As a logical point, although Eq.(3) is indeed correct, whenever we apply a limiting case or dimensions check 
and find that both checks are consistent, at most what we can say is that our checks prove the result is not 
definitely wrong (instead of proving that the result is definitely correct). Namely, it is possible for an expression 
to pass limiting cases and dimensions check and not be the correct result for a physical system. 
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The Takeaway: When you obtain a final equation for a problem, check that both the units of the 
problem and limiting cases are what you expect. Given the generality of these two checks, they 
can be used in any context which involves mathematical modeling of some physical phenomena. 
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