
Massachusetts Institute of Technology MITES 2018–Physics III 

Lecture 08: Laplace’s Method and the Mean Field Ising Model 

In Lecture Notes 05, we introduced the mean-field Ising Model and determined the thermal equilibrium 
properties of the system by analyzing the system’s macrostate. In these notes, we study the same model in 
terms of microstates by computing the partition function. Along the way we derive a useful method (called 
Laplace’s method) for computing exponential integrals 

1 A special kind of integral 
One of the first physical models we introduced in the class was the mean-field Ising model in which each of 
the N spins in a lattice interacted with every other spin. Given the methods we had developed at the time,PNwe had to study the model in terms of the macrostate variable average-spin: m = i=1 si/N . The utility of 
this macrostate analysis was that we were readily able to obtain the phase behavior of the thermal system 
by minimizing the Helmholtz free energy. In particular, we found that at thermal equilibrium temperature 
T , the average spin m had the value m which satisfied � � 

m = tanh 
J m 

, (1)
kB T 

where J defined the interaction between spins. Solving Eq.(1) for various parameter choices, we were able 
to define two phases for this system, one on either side of the critical temperature Tc = J/kB . Now that 
we have developed the partition function and have more rigorously developed the methods of equilibrium 
statistical physics, we can analyze the mean-field Ising model in terms of microstates, that is, by applying 
the Boltzmann distribution. Such an analysis will be more mathematically elegant than that used in the 
macrostate analysis, but it will lead us to a partition function which seems intractable. For our system with 
N lattice sites, the partition function of the mean-field Ising model has the form Z ∞ 

ZN ∝ dx e−Nf(x), (2) 
−∞ 

where ”∝” is the symbol for ”proportional to”, and f(x) is not a quadratic function of x. Were f(x) to be 
a quadratic function, we could just use the standard formula for Gaussian integrals to evaluate Eq.(2). But, 
it turns out, finding an approximation for the more general case of arbitrary f(x) is not too far o� from 
analyzing a basic gaussian integral. 

In these notes we will develop a method to compute integrals like Eq.(2). Such a method is applicable 
beyond the context of this problem and we will use it later to analyze a model of single-stranded DNA to 
double-stranded DNA dimerization. Outside of our specific uses, this method (under various aliases) is 
constantly applied in quantum field theory and condensed matter theory. 

Our framing question is as follows: 

Framing Questions 
How do we analyze the mean-field Ising model using the Boltzmann distribution and 
the partition function? And–when we get to it–how do we compute partition functions 

of the form Eq.(2)? 
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2 Mean-field Ising Model and its Partition Function 
We make our way towards the final form of the partition function of the mean-field Ising model by first 
writing the partition function in terms of the Boltzmann distribution and then using integration identities 
to allow us to explicitly compute the summation. 

Recalling the starting points of the mean-field Ising model, we have a lattice of N spins labeled s1, s2, . . . , sN , 
and each spin can take on the value +1 or −1. Each spin interacts with every other spin, and between two 
spins, the interaction energy is proportional to J/2N . The resulting total energy for a particular microstate 

NX{si} is given by 
J (3)E({si}) = − sisj . 
2N 

i,j=1 

We want to use the partition function to define the equilibrium thermodynamics of the spin system with the 
energy Eq.(3). To compute the partition function we need to define our summation over states, in addition 
to defining the energy in Eq.(3) and the microstates. We note that each spin is independent of every other 
spin. We can therefore sum over all microstates of the system by summing each spin over its two possible 
values. The partition function is then XX 

X 
ZN (βJ) = · · · exp (−βE({si})) 

N 

s1=±1 sN =±1 ⎛⎝ ⎞⎠ (4) 
XX βJ 

= · · · exp sisj
2N 

s1=±1 sN =±1 i,j=1 

In our previous calculations of the partition function for a spin system, we were able to factor the net Boltz-
mann factor for an arbitrary microstate into a product of Boltzmann factors for each lattice site. Such a 
product rendered the partition function soluble. However, no such factoring is possible with the partition 
function in Eq.(4). Instead, to move the calculation forward, we need to express the partition function in a 
new form. First, we note that a change of variables in a Gaussian integral yields the identity Zr ∞ 

XXXX 

b2 a 2/4a +bx e = dx e−ax . (5)
π −∞ 

This identity is true for any real value of b and any positive real value of a. Therefore, we can use the identity 
to express the partition function of the mean-field Ising model as an integral. We begin by focusing on the 
exponential in Eq.(4). Using Eq.(5), we obtain 

N N N N 
⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ !2 

2(βJ)2βJ 1 1 2 
. (6)βJ exp sisj = exp si sj = exp si

2N 4 NβJ 4 NβJ 

X 
i,j=1 i=1 j=1 i=1 

Identifying 
N 

and a = 
NβJ 

, (7) b = βJ si, 
2 

X 
i=1 

and using Eq.(5), we find 

N 
⎛⎝ ⎞⎠ !Zr XN 

2 + xβJ si . (8) 
∞βJ NβJ NβJ 

dx exp −exp sisj = x 
2N 2π 2−∞i,j=1 i=1 

The choices for a and b in Eq.(7) might seem arbitrary, and to some extent they are arbitrary; physical results 
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are independent of how exactly we parameterize our integral. However, the choices in Eq.(7) lead to a 
final result for the order parameter of this system which most closely resembles the result of the macrostate 
analysis. 

Since the x integration in Eq.(5) is independent of the summations over sk, we can move the integral 
outside the summation. Applying product identities for the exponential, we then find r Z N 

!X X ∞ XNβJ NβJ 2ZN (βJ) = · · · dx exp − x + xβJ si
2π 2−∞s1=±1 sN =±1 i=1 r Z N∞ Y XNβJ 

dx e−NβJx2/2 xβJsj= e 
2π −∞ sj =±1j=1 r Z ∞NβJ 

= dx e−NβJx2/2 2N coshN (βJx), (9)
2π −∞ 

xwhere we used cosh(x) = (e + e−x)/2 in the second line. With the identity A = eln A, we then have r Z ∞ 

ZN (βJ) = 
NβJ 

dx e−Nf (x,βJ), (10)
2π −∞ 

where we defined 
f(x, βJ) = 

βJ 
x 2 − ln [2 cosh(βJx)] . (11)

2 

Eq.(10) may appear to be a fine form for the partition function, but it is not yet in a form that makes manifest 
the phase behavior of the system or how to compute the order parameter. For example, given our previous 
partition function, we might want to compute 

NX 
hsi ≡ 

1 hsii, (12)
N 

i=1 

representing the microstate-averaged spin of the system. By determining the temperature dependence of hsi 
we will be able to determine whether the system exhibits a phase transition. But of course we have already 
answered this question: We previously used an analysis grounded in macrostates to show that the system 
indeed undergoes phase transitions, so our partition function based calculation of hsi should simply aÿrm 
this result. 

With our original partition function Eq.(4), Eq.(12) can be found from ⎛ ⎞ 
N NX X X X1 1 ⎝ βJ hsi = · · · si exp sisj ⎠ , (13)

ZN (βJ) N 2N 
s1=±1 sN =±1 i=1 i,j=1 

however this form does not admit an explicit equation which can be solved to yield the temperature depen-
dence of hsi. Instead, in order to calculate hsi, we will use Eq.(10) as a starting point, and doing so requires 
us to find a way to reduce the associated integral to something more analytically tractable. We turn to this 
task now. 

3 Laplace’s Method and Evaluating Exponential Integrals 
Our objective is to find a way to evaluate the integral in Eq.(10) (if only approximately) and other integrals 
similar to it. The first such integral we have encountered in this course was the standard Gaussian integral. 
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e−(x−2)2+ln[2 cosh(x)] 

e−(x−3/2)2/6 

x 

−(x−3/2)2Figure 1: Approximation as a Gaussian. The Gaussian function e /6 is plotted in the blue dashed 
−(x−2)2line and the exponential function e +ln[2 cosh(x)] is plotted in the solid black line. We see that the ex-

ponential function can be roughly approximated as a Gaussian function. 

In Assignment # 2, we were able to show that Z ∞ 
2 √ 

dx e−x = π. (14) 
−∞ 

More generally, a change of integration variables, leads us to the result Z ∞ r 
π+bx+c /4a+cdx e−ax 2 

= e b
2 

, (15) 
a−∞ 

which is valid for a ≥ 0 and any real numbers b and c. Now let’s consider the integral of the kind that 
appears in Eq.(10). We define Z ∞ 

IN = dx e−Nf(x), (16) 
−∞ 

for some positive N . Integrals of the form Eq.(16) cannot in general be computed exactly unless they are 
of the form Eq.(15). However, it turns out that we can use Eq.(15) to compute an approximation of Eq.(16) 
(presuming the latter is a finite integral). 

We will assume that IN is a finite integral, meaning that it evaluates to a finite number. Then we can 
xmake certain assumptions about the integrand. Since the exponential function e diverges to infinity as x 

−Nf(x)increases, the only way integrating e−Nf (x) from x = −∞ to x = +∞ could yield a finite result is if e 
went to zero as x went to ±∞. However, because the exponential function is always positive, we should also 
find that e−Nf(x) is non-zero for some finite portions of its domain. Schematically, then, we could expect 
e−Nf(x) to have a plot that looks like a hill which flattens as x varies away from the top of the hill. 

The key thing to note about this plot is that it looks like a Gaussian function (See Fig. 1 for an N = 1 
example). The essence of our approximation of Eq.(16) uses this fact to consider only terms up to quadratic 
order in the argument of the exponential, and to thus approximate e−Nf (x) as the Gaussian it appears to be. 
Namely, let’s say e−Nf (x) is highly peaked at some x = x1. If e−Nf (x) has a local maximum at x = x1, then 
f(x) must have a local minimum at x = x1. That is, at x1, the first derivative of f(x) should be zero, and the 
second derivative should be positive. 

−Nf (x): If eLocal maximum of e −Nf (x) has a local maximum at x = x1, then f(x) has a zero 
first derivative and a positive second derivative at x = x1. That is, f(x) has a local minimum at 
x = x1. 
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Given that e−Nf (x) is highly peaked around x = x1, we can assume that the values of x near x1 are the ones 
most relevant to the integral. We can capture these values of the integrand e−Nf (x) by expanding f(x) about 
its local minimum at x = x1. Doing so, we have 

f(x) = f(x1) + (x − x1)f
0(x1) + 

1
(x − x1)

2f 00(x1) + O 
� 
(x − x1)

3
� 

2 

(x − x1)
2f 00(x1).' f(x1) + (x − x1)f

0(x1) + 
1 (17) 
2 

In the final line we dropped the terms of order (x − x1)
3 and higher because such terms make sub-leading 

contributions to the final evaluation of the integral. Now, we recall that since e−Nf (x) has a local maximum 
at x = x1, then f(x) has a local minimum at the same value of x. Thus, we have f 0(x1) = 0, and our 
approximation of f(x) near x = x1 becomes a quadratic function of x: 

(x − x1)
2f 00(x1).f(x) ' f(x1) + 

1 (18)
2 

Inserting this representation of the function into the integral Eq.(16), we find Z ∞ � � 
(x − x1)

2f 00(x1)IN ' dx exp −Nf(x1) − 
N

. (19)
2−∞ 

But now Eq.(19) is in a form we can evaluate. Making the u-substitution u = x − x1, yields Z ∞ � � Z ∞ � � 
N 

(x − x1)
2f 00(x1) 

−Nf (x1) N
f 00(x1)u 2dx exp −Nf(x1) − = e du exp − 

2 2−∞ −∞ s 
−Nf (x1)=

2π
e , (20)

Nf 00(x1) 

so that, finally, we have the approximation 

Z ∞ 
s 

−Nf(x1)IN = dx e−Nf (x) ' 
2π

e [Laplace’s Method]. (21)
Nf 00(x1)−∞ 

We note that the form of this approximation already has built into it, the requirement that f 00(x1) be positive 
(and hence that e−Nf (x) has a local maximum at x = x1) because if f 00(x1) were negative, then taking its 
square root would yield an imaginary number. But we cannot have an imaginary number on the right hand 
side of Eq.(21) because we know that the integral (if f(x) is a continuously di�erentiable function over the 
entire real axis) is real. 

Now, no talk of approximations is permissible without also talking about error. For simplicity, we did � �
not keep track of the errors in this approximation, but any such error arises from the O (x − x1)

3 term 
we dropped after the Taylor expansion of f(x). Had we kept track of these errors, we would have found � � 

N−3/2O corrections to our approximation. So, rather than Eq.(21) we could write s � � 
−Nf(x1) N−3/2IN =

2π
e + O . (22)

Nf 00(x1) 

We note that Eq.(22) shows the error term getting smaller as N →∞. Thus the approximation Eq.(21) gets 
better and better for large N . For calculational purposes, we will assume we are always working in this 
”large N limit” and Eq.(21) will suÿce. 
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The approximation Eq.(21) is called Laplace’s method1 and it is applied in many areas of physics (like 
quantum field theory and statistical field theory) where ”Gaussian-like” integrals need to be evaluated. With 
Eq.(21), we can return to our calculation of the partition function Eq.(10) and evaluate it approximately. 

4 Return to the partition function 
For our mean-field Ising model, we found the partition function r Z ∞ 

ZN (βJ) = 
NβJ 

dx e−Nf (x,βJ), (23)
2π −∞ 

where 
f(x, βJ) = 

βJ 
x 2 − ln [2 cosh(βJx)] . (24)

2 

Implementing, Laplace’s method defined in Eq.(21), we obtain the approximate result s sr 
NβJ 2π βJ −Nf (x,βJ) −Nf(x,βJ)ZN (βJ) ' e = e , (25)
2π Nf 00(x, βJ) f 00(x, βJ) 

where x is defined by 
∂ 
f(x, βJ)

∂x x=x 
= 0. (26) 

Computing Eq.(26), we find 

∂ 
f(x, βJ)

∂x x=x 
= βJ x − βJ tanh(βJx) = 0, (27) 

which yields the condition 
x = tanh(βJx). (28) 

Although, it is perhaps not apparent in the relationship between Eq.(23) and Eq.(12), one can show (See 
Appendix A for the demonstration) that the average spin hsi is related to x through 

hsi ' tanh(βJx). (29) 

Therefore, with Eq.(28), we can identity x with hsi. Writing Eq.(28) in terms of hsi, we then find that the 
microstate-averaged spin satisfies 

hsi = tanh (βJhsi) , (30) 

which is identical to the result Eq.(1), if we identify m = hsi. We obtained Eq.(1) through an analysis of the 
macrostate of the mean-field Ising model, so it is gratifying that we obtained an identical result when we 
analyzed the system in terms of microstate probabilities. 

Similar to our work in Lecture Notes 05 ”Free Energy and Order Parameters”, we can analyze the solu-
tions to Eq.(30) as we change T and ultimately show that this system exhibits two phases separated by the 
temperature Tc = J/kB . We forgo describing the phase behavior since it is discusses in Lecture Notes 05. 

Aside: Second Derivative of f(x, βJ) 
Although, we do not really need it in order to establish the correspondence between Eq.(1) 
and Eq.(28), we can compute the second derivative of Eq.(24) at x = x to complete the 

1It also falls under the title ”method of steepest descent” and ”saddle point approximation”. 
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evaluation of the partition function Eq.(23) . We find 

f 00(x, βJ) = βJ − 
(βJ)2 

cosh2(βJx) 

= βJ 

� 
1 − 

βJ 

cosh2(βJx) 

� 
= βJ 

� 
1 − βJ(1 − tanh2(βJx)) 

� 
= βJ 

� 
1 − βJ(1 − x 2) 

� 
. (31) 

In the first line we used d tanh(x)/dx = 1/ cosh2(x); in the third line we used 1−tanh2(x) = 
cosh2 x; and in the final line we used Eq.(28). Requiring, f 00(x, βJ) to be greater than zero 
thus yields the condition 

x 2 > 1 − 
1 
βJ 

. (32) 

With x identified with hsi, Eq.(32) becomes 

hsi2 > 1 − 
1 
βJ 

. (33) 

which reproduces Eq.(42) in Lecture Notes 05. 

5 Final Remarks 
Although we managed to re-derive the fundamental equation (i.e., Eq.(30)) defining the phase behavior 
of the mean-field Ising Model, the main purpose of these notes was to introduce a method (i.e., Laplace’s 
method) for evaluating integrals of the form Z ∞ 

ZN ∝ dx e−Nf(x). (34) 
−∞ 

Now that we have managed to achieve this objective, we are prepared to apply it to many di�erent problems 
in statistical physics which result in integral-defined partition functions. In the next lecture notes, we apply 
this method to studying a model of DNA dimerization. 

A Demonstrating relationship between hsi and x 

We want to establish the relationship between the average spin hsi and the value of x at which f(x, βJ) is 
minimized. We begin with the definition of the average spin: ⎛ ⎞ 

N NX X X X1 1 ⎝ βJ hsi = · · · si exp sisj ⎠ , (35)
ZN (βJ) N 2N 

s1=±1 sN =±1 i=1 i,j=1 

We can write this definition in terms of the partition function alone by using a di�erent energy function. Let 
us define the energy 

N NX XJ 
E({si}) = − sisj − h sj . (36)

2N 
i,j=1 j=1 
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The partition function associated with this energy is then ⎛ ⎞ 
N NX X X X⎝ βJ 

ZN (βJ, βh) = · · · exp sisj + βh sj ⎠ . (37) 
2N 

s1=±1 sN =±1 i,j=1 j=1 

Computing the βh partial derivative of this partition function, we find ⎛ ⎞ 
N N NX X X X X∂ ⎝ βJ 

ZN (βJ, βh) = · · · sj exp sisj + βh sj ⎠ , (38)
∂(βh) 2N 

s1 =±1 sN =±1 j=1 i,j=1 j=1 

which would be proportional to Eq.(35) if we were to take h = 0. Therefore, we can write Eq.(35) exactly as � � � � 
1 1 ∂ 1 ∂ hsi = ZN (βJ, βh) = ln ZN (βJ, βh) . (39)
N ZN (βJ, βh) ∂(βh) N ∂(βh)h=0 h=0 

Now, going through a similar application of the Gaussian integral identity, we can write Eq.(37) as r Z ∞ N 
!X X XNβJ NβJ 

ZN (βJ, βh) = · · · dx exp − x 2 + (x βJ + βh) si
2π 2−∞s1 =±1 sN =±1 i=1 r Z N 

NβJ ∞ 

dx e−NβJx2 Y X 
/2 (xβJ+βh)sj= e 

2π −∞ j=1 sj =±1 r Z ∞NβJ 
= dx e−NβJx2/2 2N coshN (β(xJ + h)), (40)

2π −∞ 

or as r Z ∞ 

dx e−Ng(x,βJ,βh)ZN (βJ, βh) = 
NβJ 

, (41)
2π −∞ 

where 
g(x, βJ, βh) = 

βJ 
x 2 − ln [2 cosh (β(xJ + h))] . (42)

2 

In order to approximate Eq.(41) via Laplace’s method, we need to find the local minimum of Eq.(42). Com-
puting the first derivative of Eq.(42) and setting the result to zero at x = x0 in a way similar to the calculation 
in Sec Sec. 4, we find the condition 

x0 = tanh (β(x0J + h)) . (43) 

We see that if we were to set h = 0 in Eq.(43), then x0 would reduce to x defined in Eq.(28). Now, approxi-
mating Eq.(41) by its Laplace’s method expression, we have s � � 

−Ng(x0,βJ,βh) N−3/2ZN (βJ, βh) = 
βJ 

e + O , (44)
Ng00(x0, βJ, βh) 

where we used Eq.(22) to state the error exactly. Taking the logarithm of Eq.(44) and di�erentiating with 
respect to (βh), we obtain "s # � �∂ ∂ βJ −Ng(x0,βJ,βh) N−3/2ln ZN (βJ, βh) = ln e + O 

∂(βh) ∂(βh) Ng00(x0, βJ, βh) 

∂ � � 
= −Ng(x0, βJ, βh) + O(N0)

∂(βh) 
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2 = −N 

∂ βJ 
x0 − ln [2 cosh (β(x0J + h))] + O(N−1)

∂(βh) 2 

= N tanh (β(x0J + h)) + O(N0), (45) 

where in the second line we represented all terms not proportional to N as at least O(N0) and in the final 
line we used the fact that the coeÿcient of the ∂x0/∂(βh) term was zero. Finally, using Eq.(45) in Eq.(39), 
we find � � 

hsi = tanh (β(x0J + h)) + O(N−1) . (46)
h=0 

From x’s definition in Eq.(28), it is clear from Eq.(43) that x0 becomes x when we take h = 0. Therefore, 
taking h = 0 in Eq.(46), we obtain 

hsi = tanh (βJx) + O(N−1), (47) 

thus proving Eq.(29). 
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