
        

               
                  

   

Massachusetts Institute of Technology MITES 2018–Physics III 

Assignment 5: Statistical Physics, The Ideal Gas, and Simulations 

Preface: In this assignment, we build and explore a model of molecule-receptor binding, derive some canon-
ical results for the ideal gas model, and conclude by working through a soft-introduction to the use of sim-
ulations in computational science. 

1. Model of Receptor Binding 
On the cell membranes of cells, there are protein receptors to which extracellular molecules can bind 
and ultimately induce a signal in the cell. Let us consider a simple model of such receptor-molecule 
binding and analyze this model from the perspective of statistical physics. 
Say we have many molecules each of which can either be free or bound to one of M distinct protein 
receptors (There are many more molecules than receptors). The molecules are identical to one another 
and each one has energy 0 when it is free and energy −E0 when it is bound to a receptor. Our system 
exists at a temperature T . An example microstate is shown in Fig. 1. 

Figure 1: A particular microstate of a system with M = 5 receptor sites. 
There are two molecules bound to receptors so the energy of this microstate 
is −2E0. 

(a) Write down three physics questions we can ask about this system. Your questions should involve 
physics concepts and theories that we have discussed over the summer. 

(b) Write solutions to two of the three questions you listed above. 

2. Average Energy of an Ideal Gas 
The partition function is defined as X 

−βEiZ = e , (1) 
{i} P

where i is a particular microstate of the system of interest, and { i} defines the summation over all 
microstates in the system1. From Eq.(1), we can show that the average energy satisfies 

hEi = 
X 

piEi = − 
∂ 
ln Z, (2)

∂β 
{i} 

where we used pi = e−βEi /Z. 
1Eq.(1) presumes the microstates have a 1-1 correspondence with their energies so that we don’t need a degeneracy factor. 
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(a) Use Eq.(2) to compute the average total energy hEi of an ideal gas of N particles at a temperature 
T and in a volume V . 

(b) The standard deviation σE in the energy of gas particles can be computed from the variance ⎛ ⎞2 X X 
σ2 = hE2i − hEi2 = piE

2 − ⎝ ⎠ .E i piEi (3) 
{i} {i} 

Show that 
∂2 

ln Z = σ2 
E . ∂β2 

(4) 

Hint: Begin on the left side of Eq.(4), use the chain rule, and show that it leads to Eq.(3). 
(c) Use Eq.(4) to compute the standard deviation σE of the total energy of an ideal gas of N particles 

at a temperature T . 
(d) From the central limit theorem one can infer that the probability distribution for the total energy 

of gas particles is a Gaussian with mean hEi and standard deviation σE . Given the results in (a) 
and (b), sketch a rough plot of the probability distribution of total energy and say what this plot 
implies about the total energy of N gas particles. Take N � 1 (e.g., N ∼ 1026). Your plot should be 
to scale with respect to how σE and hEi compare with each other. 

3. Ideal Gas Law 
We previously derived the partition function for the ideal gas. In this problem, we will derive the ideal 
gas law. 

(a) By conservation of energy, the change in the internal energy of a system (dEsys.) is related to the 
work done on the system (dWon sys.) and the heat entering the system (dQent.) through the equation 

dEsys. = dWon sys. + dQent.. (5) 

For this situation, we can use Clausius’s definition of the entropy change of the system to relate 
heat to entropy: 

dQent.
dSsys. = . (6)

T 

Using the definition of free energy in terms of energy and entropy, relate the free energy change 
of the system (dFsys.) to the work done on the system (dWon sys.). Assume that we are working at 
constant temperature T . 

(b) From classical mechanics, we know that an infinitesimal amount of work done on a system arises 
from an external force fon sys. applied to the system over a distance dx: 

dWon sys. = fon sys. dx. (7) 

Figure 2: An external force fon sys. applied to a wall of area A on a volume V of gas. We 
can use this depiction to define a pressure exerted by the gas on the surroundings. 
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Consider the system shown in Fig. 2. The force fon sys. acts on a wall of area A and pushes it a 
distance dx. Because this force is acting on an area, we can define a pressure. In particular, we 
define the pressure exerted by a system on its surroundings as 

fby sys. 
P = , (8)

A 

where A is the area of the surface at which the pressure is exerted. By Newton’s 3rd law, the force 
on a system is equal to the negative of the force by a system. Using this fact, along with Eq.(7), 
Eq.(8), and a reasonable definition of dV , show that the work done on the system is 

dWon sys. = −P dV. (9) 

(c) For an ideal gas, the free energy is a function of T , V , and N . Therefore we can write Fsys. = 
F (T, V, N). If there is some change in the free energy dF , then this change must be decomposable 
into changes in the free energy’s various independent variables: � � � � � � 

∂F ∂F ∂F 
dF (T, V, N) = dT + dN + dV. (10)

∂T ∂N ∂V 

Say we have a gaseous system that is changing volume but which has a fixed number of parti-
cles and a fixed temperature. Use Eq.(10), Eq.(9), and the equation derived in (a) to express the 
pressure of the gaseous system in terms of the free energy. 

(d) In Lecture notes 06 we derived the relationship between the partition function and the free energy 
of a system. Using this relationship, the partition function of the ideal gas from Lecture notes 08, 
and the result of (c) derive 

PV = NkB T. (11) 

4. Laplace’s Method and Stirling’s Approximation 
We previously showed that we can approximate exponential integrals over infinite domains2 as Z ∞ 

s 
−Nf (x1)dx e−Nf(x) ' 

2π
e , (12)

Nf 00(x1)−∞ 

where x1 is the value of x at which f(x) has a local minimum, and the approximation gets better as 
N →∞. 

(a) Using the result above, derive an approximate formula for Z ∞ 
NΓ(N + 1) = dx e−x x . (13) 

0 

(b) Given the definition of the Gamma function, how can we approximate N ! for very large N? 
(c) Choose a specific numerical value of N and use WolframAlpha to compute N ! exactly, and use the 

result of (b) to compute N ! approximately. What is the percent error of the approximation? 
”Percent error” is defined by 

|approx. value − exact value|
% error = × 100. (14)exact value 

Collaboration Note: Perform this calculation on your own. It would be highly suspicious if several people 
end up choosing the same specific value of N . 

2This approximation sometimes gives reasonable values for finite domains as well. 
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5. Coin-Flip Simulation and the Gaussian Distribution 

If we flip a fair coin N times, then the probability that we get k heads is � � 
1 N 

P (N, k) = 
2N 

. (15)
k 

Using Stirling’s approximation (proved in Problem 4 of this assignment), it is possible to show that for 
N � 1, the probability Eq.(15) can be approximated as the Gaussian r � � 

P (N, k) ' 
2 
exp − 

2
(k − N/2)2 . (16)

πN N 

The relation between Eq.(15) and Eq.(16) is another example of the central limit theorem, the theorem 
stating that some distributions reduce to the Gaussian distribution in the large N limit. In this problem, 
we will demonstrate this result computationally by simulating many di�erent runs of coin flips. In 
science and engineering, simulations are used tounderstand theoretical models qualitatively in lieu of 
actual experiments, which may be diÿcult or time consuming to perfom. For example, rather than 
flipping a coin 1000 times and counting the number of heads ourselves, we will run a simulation to do 
this coin-flipping and counting for us. 
We will be using Mathematica to complete this problem, so we need to establish some code preliminar-
ies. 

(i) Log in to your account in one of MIT’s Athena Clusters, and go to the MITES 2018 –Physics III 
course website. 

(ii) Download the code coin flip simulation.nb from the course webpage and open it in Mathe-
matica. 

(iii) Select a block of code and run it by pressing Shift+Enter. 

Now we can begin the problem itself 

(a) What is the mean and what is the standard deviation of Eq.(15)? What are these values for N = 
1000? Hint: You already computed both of these quantities in Assignment #2 so you can just quote the 
answer. 

(b) Run each line of the ”Function Definitions” section of the code to determine what the associated 
function does. 

(c) Run each part of the ”Simple Code Examples” section. For each line that has a (∗ ∗), explain the 
purpose of the line in the overall code (For example, ”This line defines the function v” or ”This 
line produces a random number between 0 and 1”). You can write your annotations between the 
asterisks of (∗ ∗). 

(d) In ”Simulating Coin Flips”, we have two code blocks. The first code block provides a single 
simulation of coin flips, like flipping a coin 100 times and counting the number of heads. 
A student wrote this block of code with the intention of making it depict flipping a fair coin (i.e., 
50% chance of heads and 50% chance of tails) 1000 times and incrementing the tally of heads by 
1 only if heads is obtained. However, he made some mistakes in his code. 
Correct his code, annotate/explain each line with a (∗ ∗), and run it to produce the intended 
simulation. 

(e) The second code block of ”Simulating Coin Flips” provides many simulations of coin flips, like 
having 100 people each flip a coin 100 times and counting the distribution of heads across all 
people. 
In the second code block of ”Simulating Coin Flips”, the student wanted to simulate 5000 people 
flipping a fair coin (i.e., 50% chance of heads and 50% chance of tails) 1000 times and he wanted 
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to create a histogram of the number of heads obtained across all people. However, he made some 
mistakes in his code. 
Correct his code, annotate/explain each line with a (∗ ∗), and run it to produce the intended 
simulation. 

(f) After you run (e), you should find the distribution, the mean, and standard deviation of number 
of heads for the 5000 simulations of 1000 coin flips. 

– What probability distribution does the distribution of heads in the histogram remind you of? 
– How do the mean and standard deviation compare to the theoretical results computed in (a)? 

Submitting: As your submission for this part of the assignment, you should first make sure you 
write your name at the top of the notebook. Then, you should print out the entire Mathematica 
notebook which should include your runs, corrections, and annotations from the various parts 
of the problem. 
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1 Challenge Problem 

Rules of Play: The due date for this challenge problem is Sunday July 29 at the start of our final exam 
review session. Students who complete parts of this problem receive awards. Here are how awards 
are meted out: 

(a) Any points obtained from solving the problem are added to your final exam score. 
(b) If at least half of the class completes up to and including part (e), then Jason will bake something 

for the final exam. 
(c) In addition to (a), any student who solves the problem in full, will have one fewer problem on 

their final exam. (There will be 5-6 problems for the two hour final). 

6. Statistical physics of permutations 

We have 2N objects consisting of N objects of type-B denoted B1, B2, . . . , BN and N objects of type-
W denoted W1,W2, . . . ,WN . The objects can only exist in (Bk,W`) pairs, and the mircostates of our 
system are defined by a particular collection of pairings between the Bs and W s. Fig. 3 depicts one 
such microstate for N = 15. 

Figure 3: A particular microstate of a N = 15 system. 

The energy of a microstate is the sum of the energies of all the pairs. The energy of a particular pair 
(consisting of (Bk,W`)) is ( 

0 if k = `, 
E(Bk,W`) = (17) 

λ if k =6 `, 

where λ > 0 is a parameter with units of energy. Namely, from Eq.(17), if a pair consists of (Bk,Wk), 
for any k, then the energy of the pair is zero, and if a pair consists of (B`,Wk), for ` 6= k, then the 
energy of the pair is λ. We call the former a ”matched pair” and the latter a ”mismatched pair”. 

(a) How many possible microstates are there for a system with N Bs and N W s? 
(b) Let j be the number of mismatched pairs in a microstate. What is the energy of a microstate 

written in terms of j? What is the energy for the microstate shown in Fig. 3? 
(c) Letting j be the number of mismatched pairs in a microstate, argue that the partition function for 

a system of N Bs and N W s (governed by the energy Eq.(17)) can be written as 

NX 
ZN (βλ) = gN (j)e −βλj , (18) 

j=0 

and explain what gN (j), λj, and the summation represent. (Hint: Eq.(18) is analogous to Eq.(6) 
from Assignment 4.) 
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(d) Explain why we can write gN (j) as � � 

gN (j) = 
N

j 
dj , (19) 

where dj is the number of derangements of j elements. 
(e) You previously showed that the general formula for the number of derangements of N elements 

is 
N � �X 

dN = (−1)j N 
(N − j)!, (20)

j
j=0 

By using the integral expression for the factorial of a number, Z ∞ 
MM ! = dx e−x x , (21) 

0 

and the Binomial theorem, derive an integral expression for dN . Your expression should not have 
any unevaluated sums. 

(f) Use your result from (e), the expression in (d), and the Binomial theorem to derive an integral 
expression for ZN (βλ) in Eq.(18). Your expression should not have any unevaluated sums, and should 
reduce to the result from (a) when λ = 0.. 

(g) Use Laplace’s method to approximate the integral obtained in (f) 
(h) The average number of mismatched pairs in the system can be defined as PNN −βλj X j gN (j)ej=0hji = j pj = , (22)

ZN (βλ)j=0 

Using Eq.(18), write hji in terms of a partial derivative of a function of ZN (βλ). 
(i) Use the result of (h) and the Laplace’s method approximation of the partition function in (g) to 

find an approximate formula for hji as a function of temperature T . Noting that hji can only be 
greater than 0, at what value of T is the result of the approximation no longer valid? Plot hji as 
a function of T making sure to show the point where hji is zero. 
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