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Solutions 2: Probability and Counting

Preface: The basic methods of probability and counting (i.e., combinatorics) will prove to be crucial in our 
subsequent development of statistical physics. This problem set is meant to provide practice in these meth-
ods.

1. Big O notation and Taylor series

The problem states that we can look up the Taylor series for the three basic trigonometric functions
and the Taylor series for the logarithmic function. The relevant Taylor series, taken from Wolfram’s
Mathworld, are
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where in the last equation we noted that the Taylor series for ln(1 + x) only converges for |x| < 1.

(a) (3 points) To compute the Taylor series of sin(x) cos(x), we can multiply Eq.(1) and Eq.(2), or use
the identity
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with Eq.(1). Applying the identity, we have
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There are three terms explicitly shown in Eq.(6). The next term in this expansion is some coeffi-
cient times x7, so using Big O notation, we can write
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(b) (4 points) To compute the Taylor series of tan2 x we can square Eq.(3). Doing, so we have
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There are three terms explicitly shown in Eq.(6). The next term in this expansion is some coeffi-
cient times x8, so using Big O notation, we can write
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(c) (3 points) To compute the Taylor series of ln(1 + x2), we can use Eq.(4) and substitute x2 for x.
Doing so, we have

ln(1 + x2) = x2 − x4

2
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+ · · · . (10)

Beyond the first three terms, the next term is of order x8, so we can write this result in Big O
notation as

ln(1 + x2) = x2 − x4
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3
+O(x8). (11)
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2. Number of Hands of Poker

• (5 points) Straight Flush: A poker hand containing cards of sequential rank and all of the same
suit. The rank A can act as both the low rank and the high rank so that both Aª 2ª 3ª 4ª 5ª and
10© J©Q©K©A© are straight flushes.

To have a straight flush, we must have all five cards of the same suit and of sequential rank.
Because we have five cards in each hand, the cards that can act as the starting rank in such a hand
are the 10 cards A, 2, 3, 4, 5, 6, 7, 8, 9, 10. We cannot have a straight flush where the lowest starting
rank is higher than rank 10 because in such a hand the lowest starting rank will actually be higher
than at least one card. Thus there are 10 ranks we can start from. Since there are 4 suits, there are
10 × 4 = 40 cards which can function as starting cards. After we select a starting card, for each
subsequent card there is only 1 choice for the card of the same suit and next highest rank. So, we
have

40× 1× 1× 1× 1 = 40, (12)

possible straight flushes. We do not divide by any factorial because the order is important in
defining a straight.

�

• (5 points) Full House: A poker hand containing three cards of one rank and two cards of another
rank. Example: AªA«A© 8ª 8¨.

To have a full house, we must have three cards of one rank and two cards of a second rank. Any
card can be chosen to be in the three cards of the same rank or two cards of the same rank set.
For the three-card set, there are 52 cards to choose from to select the first card of this set. After
this first choice, we only have 3 other cards of the same rank but different suit. After a second
choice of one of these 3, we have 2 other cards of the same rank but different suit to complete the
three-card set.
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To create the two-card set, we have to ignore all the cards of the rank used to compose the three-
card set. This leaves us with 52 − 4 = 48 cards to choose from as the first card of the two-card
set. After this first choice, we only have 3 other cards of the same rank but different suit to choose
from to complete the two card set.
Thus there are 52 × 3 × 2 × 48 × 3 ways to select a particular ordering of three cards of one rank
and a particular ordering of two-cards of a second rank. However, the ordering amongst the cards
in the three-card set and amongst the cards in the two-card set is not important. Therefore, we
correct our result by dividing by 3! × 2! representing the product of the number of equivalent
ways to reorder the three-card set multiplied by the number of equivalent ways to reorder the
two-card set. We thus have

52× 3× 2× 48× 3

3!× 2!
= 3, 744, (13)

possible full houses.
�

• (5 points) Flush: A poker hand containing five cards all of the same suit but not of sequential rank
(i.e., not a straight flush). Example: 4« 6«K« 9« 2«.

To create a flush, we need five cards all of the same suit, but not all of sequential rank. To compute
the number of straights, we will compute the number of five-card combinations with the same
suit, regardless of whether the ranks are sequential, and then subtract the number of straight
flushes.
In selecting the first card for a flush, we can choose any card from our deck. Thus there are 52
possible choices for the first card. After this first choice, there are 12× 11× 10× 9 ways to choose
the four remaining cards of the same suit. Thus, there are 52× 12× 11× 10× 9 ways to select a
particular ordering of five cards with the same suit. However, order in a flush does not matter, so
we have to divide this result by 5!. Subtracting 40 (i.e., the number of straight flushes) from the
result of this division, we have that the number of flushes is

52× 12× 11× 10× 9

5!
− 40 = 5, 108 (14)
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• (5 points) Straight: A poker hand containing five cards of sequential rank but not all of the same
suit (i.e., not a straight flush). Example: 2ª 3« 4© 5ª 6¨.
To create a straight, we need five cards of sequential rank but not all of the same suit. To compute
the number of straights, we will compute the number of five card combinations of cards with
sequential ranks, regardless of suit, and then subtract the number of straight flushes.
As we argued in the Straight Flush part, there are 40 choices for the first card of a straight. After
this choice, we have 4 cards (one rank across the four suits) to choose from in selecting the next
card. This is true (i.e., we have 4 cards to choose from) for all subsequent cards until we complete
the hand. Thus there are 40×4×4×4×4 possible straights we can create (regardless of suit). We
do not divide this number by a factorial because order is important in defining a straight. Now,
knowing the number of possible straight flushes (i.e., 40 of them), we find the number of straights
(as defined in the prompt) by subtracting the number of straight flushes from the total number
of straights regardless of suit. We thus find that the number of straights is

40× 4× 4× 4× 4− 40 = 10, 200. (15)
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3. Mean and variance for various distributions
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(a) For an unfair coin with a probability p of getting heads and a probability of 1− p of getting tails
(in one flip), the probability of getting n ≤ N heads in N flips is

Prob(n) =
(
N

n

)
pn(1− p)N−n, (16)

where n can run from n = 0 to n = N . We note that Eq.(16) satisfies the standard normalization
requirement.

1 =
N∑
n=0

(
N

n

)
pn(1− p)N−n =

N∑
n=0

N !

n!(N − n)!
pn(1− p)N−n. (17)

Computing the mean of the number of flips, we have

N∑
n=0

nProb(n) =
N∑
n=0

n
N !

n!(N − n)!
pn(1− p)N−n

=
N∑
n=1

N !

(n− 1)!(N − n)!
pn(1− p)N−n
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(N − 1)!

(n− 1)!(N − n)!
pn−1(1− p)N−n

= Np

N−1∑
k=0

(N − 1)!

k!(N − n)!
pk(1− p)N−1−k. (18)

In the second line, we started our summation from n = 1 because the n = 0 term yielded zero. In
the third line, we factoredNp from the expression. In the final line, we redefined our summation
label as k = n − 1 in order to put the result in a more useful form. Using the identity in Eq.(17),
we can take the summation in the final line to be 1. We thus find that the mean of the binomial
distribution is

〈n〉 = Np. (19)

This result matches our intuition. If we have an unfair coin for which p is the probability of get-
ting heads after one coin flip, we expect there to be about Np heads after N coin flips.

In order to compute the variance, we must first compute 〈n2〉. Taking the advice of the prompt,
we will begin by computing 〈n(n−1)〉. The resulting calculation is similar to that used to compute
〈n〉. Computing the result, we have

〈n(n− 1)〉 =
N∑
n=0

n(n− 1)
N !

n!(N − n)!
pn(1− p)N−n

=
N∑
n=2

N !

(n− 2)!(N − n)!
pn(1− p)N−n

= N(N − 1)p2
N∑
n=2

(N − 2)!

(n− 2)!(N − n)!
pn−2(1− p)N−n

= N(N − 1)p2
N−2∑
`=0

(N − 2)!

`!(N − n)!
p`(1− p)N−2−`. (20)

In the second line, we started our summation from n = 2 because the n = 0 and n = 1 terms
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yielded zero. In the third line, we factored N(N − 1) from the expression. In the final line, we
redefined our summation label ` = n− 2 in order to put the result in a more useful form. Using
the identity in Eq.(17), we can take the summation in the final line above to be 1. We thus find

〈n(n− 1)〉 = 〈n2〉 − 〈n〉 = N(N − 1)p2. (21)

Or 〈n2〉 = 〈n〉+N(N − 1)p2 = Np+N(N − 1)p2. Computing the variance, we have

σ2
n = 〈n2〉 − 〈n〉2

= Np+N(N − 1)p2 −N2p2

= Np−Np2, (22)

or
σ2
n = Np(1− p). (23)

This value of the variance matches our intuitive understanding of variance. If p = 0 or p = 1,
there is no spread in our distribution (all of the probability is concentrated in one of two values),
and so the variance should be (and is) zero.

�

4. Gaussian integral

(a) Our goal is to compute the integral∫ ∞
−∞

dx exp
(
−αx2 + βx+ γ

)
(24)

in terms of c0, where c0 is defined by∫ ∞
−∞

dx exp
(
−x2

)
= c0. (25)

We begin by completing the square in the argument of the integrand of Eq.(24). We have

−αx2 + βx+ γ = −α
(
x2 − β

α
x

)
+ γ

= −α
(
x2 − 2

β

2α
x− β2

4α2
+

β2

4α2

)
+ γ

= −α
(
x− β

2α

)2

+
β2

4α
+ γ. (26)

Using the properties of the exponential, we then have

exp
(
−αx2 + βx+ γ

)
= exp

(
−α

(
x− β

2α

)2

+
β2

4α
+ γ

)

= exp

(
−α

(
x− β

2α

)2
)
exp

(
β2

4α
+ γ

)
. (27)
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Returning to the integral, we have∫ ∞
−∞

dx exp
(
−αx2 + βx+ γ

)
= exp

(
β2

4α
+ γ

)∫ ∞
−∞

dx exp

(
−α

(
x− β

2α

)2
)

(28)

where we factored the x-independent exponential from the integral. Using u-substitution we can
then define

u ≡
√
α

(
x− β

2α

)
. (29)

From this definition, we have du =
√
αdx (or dx = du/

√
α), u0 = −∞ and uf =∞. The integral

then becomes∫ ∞
−∞

dx exp
(
−αx2 + βx+ γ

)
= exp

(
β2

4α
+ γ

)∫ ∞
−∞

du
1√
α
exp(−u2)

= exp

(
β2

4α
+ γ

)
1√
α

∫ ∞
−∞

du exp(−u2)

= exp

(
β2

4α
+ γ

)
c0√
α
, (30)

which is the desired result in terms of c0.
�

(b) We now turn to a calculation of

I =

∫ ∞
−∞

dx e−x
2

. (31)

Squaring the result and moving to polar coordinates, we have

I2 =

∫ 2π

0

dφ

∫ ∞
0

dr r exp
(
−r2

)
. (32)

The integrand is φ independent, so we can perform the φ integral right away. Doing so gives us

I2 = 2π

∫ ∞
0

dr r exp
(
−r2

)
= π

∫ ∞
0

dr 2r exp
(
−r2

)
. (33)

For the final step, we will use u-substitution and define u = r2. This gives us du = 2r dr, u0 = 0,
and uf =∞. The integral then becomes

I2 = π

∫ ∞
0

du e−u = π. (34)

where we used
∫∞
0
du e−u = −e−u|∞0 = 1. Taking the square root of Eq.(34) and choosing the

positive root (because I is the integral of an exclusively positive function), we have

I =
√
π. (35)
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(c) Combining the results from (a) and (b), we find

∫ ∞
−∞

dx exp
(
−αx2 + βx+ γ

)
= exp

(
β2

4α
+ γ

) √
π

α
. (36)
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5. The 68, 95, 99.7 Rule

(a) Our probability density is

p(x) =
e−(x−x0)

2/2σ2
0√

2πσ2
0

. (37)

By the definition of probability density, the probability to be in a domain of x values between
x0 − kσ0 and x0 + kσ0 is the definite integral of p(x) within this domain. Namely,

Prob(x0 − kσ0 ≤ x ≤ x0 + kσ0) =

∫ x0+kσ0

x0−kσ0

dx
e−(x−x0)

2/2σ2
0√

2πσ2
0

. (38)
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(b) We will reduce the result in Eq.(38) so that it is only a function of k. We define

u =
x− x0
σ0
√
2
, (39)

which gives us du = dx/σ0
√
2 (or dx = σ0

√
2 du) and

u0 =
x0 − kσ0 − x0

σ0
√
2

= − k√
2
, (40)

and
uf =

x0 + kσ0 − x0
σ0
√
2

= +
k√
2
. (41)

Eq.(38) then becomes

Prob(x0 − kσ0 ≤ x ≤ x0 + kσ0) =

∫ k/
√
2

−k/
√
2

du
√
2σ0

e−u
2√

2πσ2
0

=
1√
π

∫ k/
√
2

−k/
√
2

du e−u
2

. (42)
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(c) Using WolframAlpha, we find
i.

Prob(x0 − σ0 ≤ x ≤ x0 + σ0) =
1√
π

∫ 1/
√
2

−1/
√
2

du e−u
2

= 0.6827 (43)

ii.

Prob(x0 − 2σ0 ≤ x ≤ x0 + 2σ0) =
1√
π

∫ 2/
√
2

−2/
√
2

du e−u
2

= 0.9545 (44)
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iii.

Prob(x0 − 3σ0 ≤ x ≤ x0 + 3σ0) =
1√
π

∫ 3/
√
2

−3/
√
2

du e−u
2

= 0.9973 (45)

�

(d) The quantities for parts i., ii., and iii. of (c) give, respectively, the probability to find the random
variable one-standard deviation, two-standard deviations, and three-standard deviations away
from the mean.
The values in (c) are often summarized as the 68−95−99.7 rule. They are important in probability
theory because the probability distribution Eq.(37) occurs in many areas of statistics (also occurs
in statistical physics!), and thus it is useful to know how the cumulative probability changes as
we expand our interval of consideration around the mean.

�
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