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Solution 3: Beginning Statistical Physics

Preface: In this assignment, we use the quantitative definition of information to make a bet in a number 
guessing game. We review the definition of microstate and macrostate. We derive the integral form of N !. 
And finally, we use the Boltzmann definition of entropy to study a simple model of a rubber band.

1. Betting on Number Guessing
(10 points) Our goal is to determine whether we should take our friend’s bet, and the determining
factor will be whether we can guess the hidden number in five questions or fewer, on average. If we
determine that we can guess the hidden number in five or fewer questions, on average, then we will
take the bet. Otherwise, we will note take the bet.
In Lecture Notes 03 ”Entropy and Information”, we determined that if there is a probability pi of
getting a number i out of a set of numbers {i}, then the average number of questions we will need to
guess the number (under the given conditions of the ”Guess that number” game) is

〈# of Qs 〉 = −
∑
{i}

pi log2 pi. (1)

For the game as it is outlined in the prompt, we only have the number from i = 0 to 99 inclusive, so
Eq.(1) becomes

〈# of Qs 〉 = −
99∑
i=0

pi log2 pi. (2)

From the prompt, we know that the hundreds digit has eighteen 9-cards and one card each of
0, 1, 2, 3, 4, 5, 6, 7, 8. Therefore, the probability of getting a 9 in the hundreds digit is 18/(18 + 9) = 2/3,
and the probability of getting any other particular number in the hundreds digit is 1/3× 1/9 = 1/27.
Similarly, since the tens digit has nine 9-cards and one card each of 0, 1, 2, 3, 4, 5, 6, 7, 8, the probability
of getting a 9 in the tens digit is 9/(9 + 9) = 1/2, and the probability of getting any other particular
number in the tens digit is 1/2× 1/9 = 1/18.
From these probabilities, we can determine the probability to get any number between 0 and 99. We can
divide these numbers into four categories (and four associated probabilities) contingent on whether
there is a 9 in one of the digits:

p99 =
2

3
× 1

2
=

1

3
(3)

p9B =
2

3
× 1

18
=

1

27
[Where B 6= 9 .] (4)

pA9 =
1

27
× 1

2
=

1

54
[Where B 6= 9.] (5)

pAB =
1

27
× 1

18
=

1

486
[Where A 6= 9 and B 6= 9.] (6)

We can then write Eq.(2) as

〈# of Qs 〉 = −p99 log2 p99 −
∑
{9B}

p9B log2 p9B −
∑
{A9}

pA9 log2 pA9 −
∑
{AB}

pAB log2 pAB , (7)
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where the summations are over all numbers of the associated form. Given that there are nine numbers
of the form 9B (whereB 6= 9) and nine numbers of the formA9 (whereA 6= 9) and 100−1−9−9 = 81
numbers of the form AB where (A 6= 9 and B 6= 9), we find that Eq.(7) becomes

〈# of Qs 〉 = −p99 log2 p99 − 9× p9B log2 p9B − 9× pA9 log2 pA9 − 81× pAB log2 pAB

= −1

3
log2

1

3
− 9× 1

27
log2

1

27
− 9× 1

54
log2

1

54
− 81× 1

486
log2

1

486

=
1

3
log2 3 +

1

3
log2 27 +

1

6
log2 54 +

1

6
log2 486, (8)

or

〈# of Qs 〉 =
1

6
log2 (9× 729× 54× 486) ≈ 4.56. (9)

Rounding Eq.(9) up to an integer number, we see that it will take on average five questions to deter-
mine the hidden number, presuming we implemented an optimal binary questioning strategy. There-
fore we should certainly take the bet!

�

2. Personal Microstate and Macrostate Examples

(a) (2 points) A fair coin is flipped 10 times.
• Macrostate: We can have a macrostate consisting of 4 heads and 6 tails.
• Microstate: One particular microstate of this macrostate could be the sequence of

flips HTTHTTTHHT.
�

(b) (2 points) We draw 10 balls from a bag filled with 40 distinguishable balls equally divided between
red, orange, yellow, and green colors.
• Macrostate: We can have a macrostate consisting of 3 red balls, 5 orange balls, 1 yellow ball,

and 1 green ball.
• Microstate: One particular microstate of this macrostate could be the balls
R1, R5, R7, O2, O4, O6, O8, O10, Y9, G7.

�

(c) (2 points) We roll three fair six-sided dice.
• Macrostate: We can have a macrostate consisting of dice whose values sum up to 11.
• Microstate: One particular microstate of this macrostate could be three dice each of which

has one of the values 3, 6, 2

�

3. Gamma function (10 points)

(a) We have the integral

Γ(N + 1) =

∫ ∞
0

dx e−xxN . (10)

Our goal is to relate this integral to the one defining Γ(N). First, we implement integration by
parts ∫ ∞

0

dx f(x)
d

dx
g(x) = f(x)g(x)

∣∣∣∞
0
−
∫ ∞
0

dx g(x)
d

dx
f(x), (11)
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where we will take f(x) = xN and dg(x)/dx = e−x. We then have df(x)/dx = NxN−1 and
g(x) = −e−x. The original Gamma function is then

Γ(N + 1) =

∫ ∞
0

dx e−xxN

= −xNe−x
∣∣∣∞
0

+N

∫ ∞
0

dx e−xxN−1

= N

∫
dx e−xxN−1, (12)

where in the final equality we used the limit

lim
x→∞

xNe−x = 0. (13)

By the definition of the gamma function, we therefore can conclude that

Γ(N + 1) = N Γ(N). (14)

�

(b) Evaluating Γ(N + 1) for N = 0, we have

Γ(1) =

∫ ∞
0

dx e−x = −e−x
∣∣∣∞
0

= 1. (15)

�

(c) Using Eq.(14) iteratively and then using Eq.(15) for the final Gamma function, we have

Γ(N + 1) = NΓ(N) = N(N − 1)Γ(N − 1)

= N(N − 1)(N − 2) · · · 2 · 1Γ(1)

= N(N − 1)(N − 2) · · · 2 · 1. (16)

We therefore, find that Γ(N+1) is simplyN factorial: Γ(N + 1) = N !. Consequently, we can use
the integral definition of Γ(N + 1) to defineN ! for numbersN which are not exclusively integers.

�

4. Unusual Band

(a) (5 points) We want to determine the entropy of a system with n+ right-ward pointing links and
n− left-ward pointing links. We will use the Boltzmann definition of entropy in which, for Ω
microstates in the system, the entropy is

S = kB ln Ω. (17)

Given that each link can point either to the right or to the left and there are N total links, the
number of possible ways to have n+ right-ward links is ”N choose n+”. Thus the number of
microstates is

Ω =

(
N

n+

)
=

N !

n+!(N − n+)!
. (18)
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Therefore, the entropy of this system is

S(N,n+) = kB ln
N !

n+!(N − n+)!
. (19)

For links, of which each is length `, the total length of the rubber band is

L = `(n+ − n−) = `(2n+ −N), (20)

where we used n− = N − n+. Solving Eq.(20) for n+ gives us

n+ =
1

2
(N + L/`) =

N

2
(1 + L/`N) . (21)

Substituting Eq.(21) into Eq.(19), we find

S = kB ln
N ![

N
2 (1 + L/`N)

]
!
[
N
2 (1− L/`N)

]
!
, (22)

which is the entropy written exclusively in terms of L and N .
�

(b) (5 points) Stirling’s approximation gives us

lnN ! = N lnN −N +
1

2
ln(2πN) +O(N−1). (23)

Neglecting the 1
2 ln(2πN) term, we would like to use Eq.(23) to write Eq.(22) as an analytic func-

tion of L. First, we use a logarithmic identity to represent Eq.(22) as three terms:

S/kB = lnN !− ln

[
N

2
(1 + L/`N)

]
!− ln

[
N

2
(1− L/`N)

]
! (24)

Now, applying Eq.(23) to each term in Eq.(24), we have

S/kB = N lnN −N −
[
N

2
(1 + L/`N)

]
ln

[
N

2
(1 + L/`N)

]
+
N

2
(1 + L/`N)

−
[
N

2
(1− L/`N)

]
ln

[
N

2
(1− L/`N)

]
+
N

2
(1− L/`N) +O(lnN)

= N lnN −
[
N

2
(1 + L/`N)

]
ln

[
N

2
(1 + L/`N)

]
−
[
N

2
(1− L/`N)

]
ln

[
N

2
(1− L/`N)

]
+O(lnN)

= N lnN − N

2

[
ln
N

2
+ ln

(
1 +

L

`N

)]
− L

2`

[
ln
N

2
+ ln

(
1 +

L

`N

)]
− N

2

[
ln
N

2
+ ln

(
1− L

`N

)]
+
L

2`

[
ln
N

2
+ ln

(
1− L

`N

)]
+O(lnN)

= N lnN − N

2
ln
N

2
− N

2
ln

(
1 +

L

`N

)
− L

2`
ln

(
1 +

L

`N

)
− N

2
ln
N

2
− N

2
ln

(
1− L

`N

)
+
L

2`
ln

(
1− L

`N

)
+O(lnN) (25)
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In the second equality, we canceled the non-logarithm terms. In the third equality, we used the
properties of logarithms to distribute the coefficients among multiple terms. In the final equality,
we canceled the terms of the form L/2` ln(N/2). Further simplifying the final line, we obtain

S/kB = N ln 2− N

2
ln

(
1− L2

`2N2

)
− L

2`
ln

1 + L/`N

1− L/`N
+O(lnN), (26)

which is the desired result. �.
(c) (5 points) For this part, we seek to compute the force given the definition

F = −T ∂S
∂L

. (27)

From Eq.(26), we find

F = −T ∂

∂L
kB

[
N ln 2− N

2
ln

(
1− L2

`2N2

)
− L

2`
ln

1 + L/`N

1− L/`N
+O(lnN)

]
= −kBT

[
−N

2

−2L/`2N2

1− L2/`2N2
− 1

2`
ln

1 + L/`N

1− L/`N
− L

2`

(
1/`N

1 + L/`N
+

1/`N

1− L/`N

)]
= −kBT

[
L

`2N

1

1− L2/`2N2
− 1

2`
ln

1 + L/`N

1− L/`N
− L

2`

2/`N

1− L2/`2N2

]
= −kBT

[
L

`2N

1

1− L2/`2N2
− 1

2`
ln

1 + L/`N

1− L/`N
− L

`2N

1

1− L2/`2N2

]
, (28)

which leaves us with

F =
kBT

2`
ln

1 + L/`N

1− L/`N
. (29)

(d) (5 points) For this part of the problem, we seek to expand Eq.(29) to first order in L in the limit
L/N`� 1. Using the Taylor series expansion of the logarithm,

ln(1 + x) = x+O(x2) [For |x| < 1], (30)

we have

F =
kBT

2`
[ln(1 + L/`N)− ln(1− L/`N)]

=
kBT

2`

[
L/N`+O(L2/`2N2) + L/N`+O(L2/`2N2)

]
=
kBT

N`2
L+O(L2/`2N2). (31)

Therefore if F ' KL, then K is given by

K =
kBT

N`2
. (32)

If we tookF to be a constant in Eq.(31), and we were to heat up the system leading to a temperature
increase, then L (the length of the rubber band) would decrease.
For the video (Rubberband Thermodynamics), we have a slightly different situation. In the
video L is a constant, and the rubber band is heated up with a light bulb, leading to an increase
in temperature. The end result is that F increases, and the mass is lifted slightly off the scale
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https://www.youtube.com/watch?v=ovVO8NDdon4


making it have a lower reading and a lower apparent weight.
�
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