
Massachusetts Institute of Technology MITES 2018–Physics III

Assignment 5: Statistical Physics, The Ideal Gas, and Simulations

Preface: In this assignment, we build and explore a model of molecule-receptor binding, derive some canon-
ical results for the ideal gas model, and conclude by working through a soft-introduction to the use of sim-
ulations in computational science.

1 Challenge Problem
6. Statistical physics of permutations

Figure 1: A particular microstate of a N = 15 system.

(a) The number of microstates in the system forN Bs andN W s is the total number of ways to choose
a collection of (Bk,W`) pairings. To find this number we can imagine arranging all the type-B
objects along a line in order. Then, the number of collections of (Bk,W`) pairings is the number
of ways we can order the type-W objects along the line of type-B objects. This number is simply
the number of ways to order N distinct objects in a list. Therefore, the number of microstates in
the system is

N ! (1)

�

(b) We know that there is an energy contribution λ for each mismatched pair. Therefore, if there are
j mismatched pairs in the system, then the energy is

E = λj. (2)

For the figure Fig. 1, there are 10 mismatched pairs, so the energy of this microstate is E = 10λ.

�

(c) Whenever we are computing the partition function for a system, we can write the partition func-
tion as a summation over microstates or a summation over macrostates. If we write the partition
function in terms of the latter, we need to include a degeneracy factor to account for the number
of microstates associated with a particular macrostate. Schematically, a general partition function
can be written as

Z =
∑

macrostate

(
Degeneracy of macrostate

)
e−β(Energy of macrostate), (3)
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For example, the partition function of a set ofN spins (each of which has magnetic moment µ) in
a magnetic field H can be written as

Zspins =
N∑

n+=0

(
N

n+

)
eβµH(2n+−N). (4)

In the summation, we define the macrostate by n+, the number of up-spins, and
(
N
n+

)
represents

the degeneracy factor (i.e., the number of microstates withn+ up spins). The quantity−µH(2n+−
N) is the energy of the macrostate (or, equivalently, the energy of a microstate associated with
that macrostate)
For our system of permutations, we can write the partition function as

ZN (βλ) =
N∑
j=0

gN (j)e−βλj , (5)

where we define our macrostate by the number of mismatched pairs j, and the quantity−λj is the
energy of at macrostate. Thus, by Eq.(3), gN (j) is the degeneracy of the macrostate. Specifically,
it is the number of microstates associated with a particular value of j, and, given our definition
of j, gN (j) is found by counting the number of ways we can have j mismatched pairs in a system
with N W s and N Bs.

�

(d) In part (c), we surmised that gN (j) is the number of ways to have jmismatched pairs in the system.
We can calculate this quantity by simple combinatorics. Let’s say we begin withN matched pairs.
To find the number of ways to have j mismatched pairs, we will count the number of ways to
choose j of theseN original pairs, and then count the number of ways to rearrange the objects in
these pairs so that the j pairs are totally mismatched. gN (j) will then be the product of these two
numbers.
First, the number of ways to choose j pairs out of N total pairs is

(
N
j

)
.

Next, the number of ways to completely rearrange (i.e., mismatch) the objects in a collection of
j paired objects is simply the number of ways to completely rearrange j objects in a line. This
quantity was computed in Assignment # 4 and denoted as the number of derangements of a list.
For j elements in a list, the number of derangements is

dj =

j∑
k=0

(
j

k

)
(−1)k(j − k)!. (6)

Multiplying our two results (the number of ways to choose j pairs from N pairs and the number
of ways to completely rearrange the objects in these pairs), we have

gN (j) =

(
N

j

)
dj . (7)

�

(e) It is possible to write the formula for derangements as an integral. If we have N items in a list,
the number of possible derangements is

dN =
N∑
k=0

(
N

k

)
(−1)k(N − k)!. (8)
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Using the integral definition of the factorial, we have

(N − k)! =
∫ ∞
0

dx e−xxN−k. (9)

Inserting this result into Eq.(8) yields

dN =
N∑
k=0

(
N

k

)
(−1)k

∫ ∞
0

dx e−xxN−k

=

∫ ∞
0

dx e−x
N∑
k=0

(
N

k

)
(−1)kxN−k

=

∫ ∞
0

dx e−x(−1 + x)N , (10)

where we used the binomial theorem in the final line. We thus have

dN =

∫ ∞
0

dx e−x(x− 1)N . (11)

�

(f) We now want to use Eq.(11) to compute an integral expression for the partition function. First,
returning to Eq.(7) and using Eq.(11) to write the result as an integral, we have

gN (j) =

(
N

j

)∫ ∞
0

dx e−x(x− 1)j . (12)

We can insert this result into Eq.(5) to obtain

ZN (βλ) =
N∑
j=0

gN (j)e−βλj

=
N∑
j=0

(
N

j

)∫ ∞
0

dx e−x(x− 1)je−βλj

=

∫ ∞
0

dx e−x
N∑
j=0

(
N

j

)[
(x− 1)e−βλ

]j
. (13)

Using the Binomial theorem in the final line, we obtain

ZN (βλ) =

∫ ∞
0

dx e−x
[
1 + (x− 1)e−βλ

]N
. (14)

We note that if we set λ = 0, we find

ZN (βλ)
∣∣∣
λ=0

=

∫ ∞
0

dx e−x
[
1 + (x− 1)

]N
=

∫ ∞
0

dx e−xxN = N !, (15)

which is the total number of microstates in the system. This is what we expect: When all the mi-
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crostates have the same energy, the partition function reduces to the total number of microstates
in the system.

�

(g) We now seek to use Laplace’s method to evaluate the integral in Eq.(14). First we write the par-
tition function as

ZN (βλ) =

∫ ∞
0

dx e−x
[
1 + (x− 1)e−βλ

]N
=

∫ ∞
0

dx e−Nf(x,βλ), (16)

where we defined
f(x, βλ) =

x

N
− ln(1 + (x− 1)e−βλ). (17)

Then, by Laplace’s method, we have

ZN (βλ) '

√
2π

Nf ′′(x1, βλ)
exp [−Nf(x1, βλ)] , (18)

where x1 is the value of x at which f(x, βλ) is at a local minimum. To find this value of x we
calculate f ′(x, βλ) and set it to zero for when x = x1. Doing so we have

0 = f ′(x, βλ)|x=x1

=
1

N
− e−βλ

1 + (x1 − 1)e−βλ

1

N
=

e−βλ

1 + (x1 − 1)e−βλ

=
1

eβλ + x1 − 1
. (19)

Calculating the inverse of the final line and adding 1− eβλ to both sides gives us

x1 = N − eβλ + 1. (20)

Eq.(20) gives us the value at which the first x derivative of Eq.(17) is zero. To apply Laplace’s
method, we need to ensure that Eq.(17) is at a local minimum at Eq.(20). Computing the second
derivative of f(x, βλ) at x1, we have

f ′′(x, βλ)
∣∣∣
x=x1

=
e−βλe−βλ

(1 + (x1 − 1)e−βλ)
2

=

(
e−βλ

1 + (x1 − 1)e−βλ

)
=

1

N2
, (21)

where in the final line we used the equality above Eq.(19). We thus see that x1 indeed defines a
local minimum because f ′′(x, βλ) is always positive at x1. To complete our evaluation of Eq.(18),
we need to compute f(x, βλ) at x1. Doing so, we have

f(x, βλ)|x=x1 =
N − eβλ + 1

N
− ln(Neβλ)

=
N − eβλ + 1

N
− lnN − βλ. (22)
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Finally, with Eq.(22) and Eq.(21), we find that Eq.(18) becomes

ZN (βλ) '
√

2π

N 1
N2

exp

[
−N

(
N − eβλ + 1

N
− lnN − βλ

)]
, (23)

or, more simply,

ZN (βλ) '
√
2πN exp

[
−
(
N − eβλ + 1−N lnN −Nβλ

) ]
, (24)

�

(h) We want to find an expression for 〈j〉, the average number of mismatched pairs, in terms of the
partition function and its derivative. From the definition of the partition function as a finite sum,
we have

ZN (βλ) =
N∑
j=0

gN (j)e−βλj . (25)

From this expression, we can infer that 〈j〉 is

〈j〉 = 1

ZN (βλ)

N∑
j=0

j gN (j)e−βλj

= − 1

ZN (βλ)

∂

∂(βλ)
ZN (βλ). (26)

From the properties of chain rule, we then find

〈j〉 = − ∂

∂(βλ)
lnZN (βλ), (27)

which is the desired expression. �

(i) Combining the results from (g) and (h), we can find an approximate expression for the average
number of mismatched pairs as a function of temperature. We have

〈j〉 = − ∂

∂(βλ)
lnZN (βλ)

' − ∂

∂(βλ)

[
1

2
ln(2πN)−

(
N − eβλ + 1−N lnN −Nβλ

)]
= −eβλ +N, (28)

which yields the temperature dependent function

〈j〉 ' N − eλ/kBT . (29)

Since 〈j〉 ≥ 0, we see that Eq.(29) is only valid for certain temperatures. Namely, solving for the
temperature at which 〈j〉 ≥ 0, we find

kBT ≥
λ

lnN
. (30)

Below this temperature, 〈j〉 assumes the value 〈j〉 = 0.
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λ/ lnN

| T

〈j〉

Figure 2: Plot of 〈j〉 as a function of T . Below the temperature λ/ lnN , the
average number of mismatched pairs is zero.

�
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