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Exercise:  Simulating spatial processing in the visual pathway with convolution 
 
This problem uses convolution to simulate the spatial filtering performed by neurons in the early 
stages of the visual pathway, from the retina to cortical area V1. The solution code uses built-in 

MATLAB functions, meshgrid and conv2, and functions for loading and displaying images from 

the MATLAB Image Processing Toolbox, imread and imshow.  
 
Part 1:  Two-dimensional convolution 
 

Given an image 𝐼(𝑥, 𝑦) and kernel 𝑘(𝑥, 𝑦), the convolution operation is formally defined as 
 

𝐶(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑚, 𝑛) 𝑘(𝑥 − 𝑚, 𝑦 − 𝑛)

∞

𝑛=−∞

∞

𝑚=−∞

 

 

In practice, convolution is performed over finite windows. Given the simple image and kernel 
shown below, the convolution operation involves centering the kernel on each image location and 
computing a weighted sum of the corresponding values in the image, with weights specified by 
the kernel (also referred to as the convolution operator or mask). Centering the kernel on the 
image value 10, circled in red, yields a convolution value of 18. In this example, the convolution is 
not computed at locations around the image border.  

 

 
 

(a) Create a matrix containing the kernel below by directly entering the values, as in: 
 

kernel = [1 2; 3 4]; 

 

0.1 0.3 0.5 0.3 0.1 

0.3 0.7 0.9 0.7 0.3 

0.5 0.9 1.0 0.9 0.5 

0.3 0.7 0.9 0.7 0.3 

0.1 0.3 0.5 0.3 0.1 

®
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(b) An image of coins comes with the Image Processing Toolbox. Load this image into MATLAB 

using imread and convert the values from type unit8 (integers from 0 to 255) to floating point 

using the double function: 
 

image = double(imread('coins.png')); 
 

(c) Convolve the image with kernel using the conv2 function, for example: 
 

result = conv2(image, kernel, 'valid'); 
 

If the option 'valid' is specified as the third input, MATLAB only computes convolution values 

for locations at which the entire kernel fits within the image. Compare the sizes of the image and 
result matrices. 
 

(d) Use subplot to display image and result in a 1x2 arrangement. Any 2D matrix can be 

displayed with the imshow function: 
 

 imshow(image, []) 
 

If an empty vector [] is given as the second input, MATLAB displays the smallest image value as 

black, the largest as white, and intermediate values spread over shades of gray. Explicit minimum 
and maximum values can be specified with a two-element vector, for example: 
 

 imshow(image, [150 200]) 
 

Note that the convolution result is just a slightly blurry version of the original image.  
 

Part 2:  Gaussian kernel 
 

The optics of the eye blurs the incoming image slightly before light is captured by photoreceptors. 
The next stage of retinal processing is performed by bipolar cells, whose receptive fields have a 
spatial structure that can be described as the difference between two circularly symmetric 
Gaussian functions. Bipolar cells effectively compute a convolution of the photoreceptor array 
with a kernel that combines a narrow central Gaussian and broader Gaussian of opposite sign, 
creating a center-surround receptive field, as shown in the figure below. A neuron with this 
receptive field structure is excited by flashing light in the center of its receptive field and inhibited 
by flashing light in the surround (on-center cell). Off-center cells have the opposite structure. The 
magnitude of the response to a light stimulus at different locations in the receptive field is 
conveyed by the cross-section shown in red: 
 

 
 
This spatial receptive field is preserved in the output of retinal processing carried by the retinal 
ganglion cells, and subsequent processing by the lateral geniculate nucleus.  
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In this part of the exercise, you will define a function that creates a Gaussian kernel, and observe 
the results of smoothing an image with Gaussians of different size. We begin with the following 
definition of a 2D Gaussian function: 
 

𝐺(𝑥, 𝑦) =  𝑒
−

𝑥2+𝑦2

2𝜎2  
 

where 𝜎 specifies the spread of the Gaussian.  
 

(a) Define a function gauss2D that has a single input corresponding to 𝜎 and returns a matrix 

containing a Gaussian kernel given by the above expression. Use meshgrid to generate two 

matrices that contain the x and y coordinates, respectively, of regularly spaced locations on a 2D 

grid. The following code illustrates the use of meshgrid: 

 

 
 
Run the above example and view the contents of the matrices x and y. In your gauss2D 

function, use meshgrid to generate coordinates in the range from −2𝜎 to +2𝜎 in increments of 

0.5. The function exp can be used for the exponential.  
 

(b) Use gauss2D to create Gaussian kernels with 𝜎 = 1 and 𝜎 = 2. Use conv2 to convolve the 

coins image with each kernel and display the image and convolution results using subplot and 

imshow. How do the results differ for the two kernel sizes? 
 
Part 3:  Laplacian of Gaussian kernel 
 

The difference-of-Gaussians structure of the receptive fields of neurons in the early visual 
pathway can be approximated by the Laplacian of a 2D Gaussian function. The Laplacian of a 

function 𝑓(𝑥, 𝑦) is defined as the sum of the second partial derivatives with respect to x and y. 

Applied to the 2D Gaussian function, this operation yields the following (∇2 denotes the 
Laplacian): 
 

∇2𝐺 = (
1

𝜎2
) (

𝑥2 + 𝑦2

𝜎2
− 2) 𝑒

−
𝑥2+𝑦2

2𝜎2  

 

(a) Define a function lapGauss that has a single input corresponding to 𝜎 and returns a matrix 

containing the Laplacian-of-Gaussian kernel given by the above expression. Use meshgrid to 

generate coordinates in the range from −3𝜎 to +3𝜎, in increments of 0.5.  
 

(b) Use lapGauss to create kernels with 𝜎 = 1 and 𝜎 = 2. Use conv2 to convolve the coins 

image with each kernel and display the image and convolution results using subplot and 

imshow. How do the results differ for the two kernel sizes? 
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(c) The Laplacian embodies a second derivative operation. The second derivative changes sign 
(crosses zero) at the locations of intensity changes in the original image. The process of finding 
the locations of these intensity changes is often referred to as edge detection. To get a quick idea 

of where the zero-crossings of the convolution occur, display the results from Part b with imshow, 

specifying a minimum value of 0 and maximum value close to 0: 
 

 imshow(result, [0 0.001]) 

 
Part 4:  Gabor kernel 
 

The spatial receptive field of simple cells in cortical area V1 resembles the Gabor function, which 
is defined as the product of a 2D Gaussian and an oriented sine-wave function. The Gabor 
function can be expressed mathematically as follows: 
 

𝐺𝑎𝑏𝑜𝑟(𝑥, 𝑦) =  𝑒
−

𝑥r
2+𝑦r

2

2𝜎2 cos (2𝜋 (
𝑥r

𝜆
) +  𝜓) 

where 
 

   𝑥r =  𝑥 cos(𝜃) + 𝑦 sin(𝜃) 
 

   𝑦r =  −𝑥 sin(𝜃) + 𝑦 cos(𝜃) 
 

𝜃 specifies the orientation of the Gabor, and 𝜆 and 𝜓 are the wavelength and phase (shift) of the 
sine wave, respectively, as shown in the following diagram: 
 

 
 
(a) Define a function Gabor that has four inputs corresponding to 𝜎, 𝜃, 𝜆, and 𝜓, and returns a 

matrix containing the Gabor kernel specified by the above expression. Use meshgrid to 

generate coordinates in the range from −3𝜎 to +3𝜎, in increments of 0.5. For the sine and cosine 

functions, either use sin and cos (input angle is specified in radians), or sind and cosd (input 

angle is specified in degrees). 
 

(b) Use Gabor to create kernels with four different orientations (0°, 45°, 90°, 135°) and with 𝜎 =
2, 𝜆 = 4, and Ψ = 0°. Use conv2 to convolve the coins image with each kernel and display the 

four convolution results using subplot and imshow (note that a loop can be used to implement 

these steps compactly). How do the results differ for the four orientations? 
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