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GIORGIO METTA: So I'll be talking about my work for the past 11 years. So this has been, certainly, exciting, but

also was long in duration, so we had to sort of stick to the goal. And I'll show you also a couple

of things-- I mean, most of this work has been possible because we have a team of people

that contributed to both the design of the robot and the research we're doing on the robot, so

I'll be freely drawing from the work of these other people. I just cited them as the iCub team,

because I couldn't list everybody there, but you'll see a picture later that shows how many

people were actually involved in developing this robot.

So our, let's say, goal, although we didn't start it like this, is to build robots that can interact

with people, and maybe one day be commercially-available to be deployed in the household.

Everything we've done is-- on the design of the robot has to do with a platform capable of

interacting with people in a natural way. And this is reflected in the shape of the robot, that it's

humanoid. It's reflected in the type of skills we tried to implement in the robot. And overall on

the design, the platform excels in terms of strength, in terms of sensors, and so forth.

There was an, let's say, hidden reason. We wanted to design a platform for research, also, so

when we started, we didn't think of a specific application. Our idea was to have a robot as

complicated as possible to give researchers the possibilities of doing whatever they liked.

So the robot can walk, has cameras, tactile sensors. It can manipulate objects. We put a lot of

effort into the design of the hands. And it's complicated.

And it breaks often, so it's not necessarily the best platform, but it's the-- I believe, the only

platform that can provide you with mobile manipulation, and at the same time with a

sophisticated oculo motor system in the eyes and cameras. And maybe it doesn't give you

lasers, so you have to do with their vision.

The result is this platform that's shown here. This started as a European project, so there was

an initial funding that allowed for basically hiring people to design the mechanics and

electronics of the robot. And unfortunately, the robot is not very cheap. I mean, the overall--



we tried to put the best components everywhere. And this is reflected in the cost, which

doesn't help diffusion, to a certain extent.

In spite of this, we managed to, let's say, "sell," between quotes, because we don't make any

profit out of it, 30 copies of the robot. There are still two of them to be delivered this year, so

there are, at the moment, 28 around there. And four of them are in our lab, and are used daily

by our researchers.

And given the complexity of the platform, we managed, at best, to build four robots per year.

And at best means that we're always late in constructions. We're always late in fixing the

robots. And that's because, I mean, we have a research lab trying also to do-- to have this,

let's say, more commercial side or support side to the community of users, which, in fact,

doesn't work. I mean, you cannot ask your PhD students to go and fix a robot somewhere in

the world.

It was striking a bit that we managed to actually sell the robot in Japan. And that's because,

you know, you see Japan as the place of humanoid robots. And having somebody asking a

copy of our robot there was a bit strange. But nonetheless, the project is completely open-

source. If you go to our website, you can download all the CAD files for the mechanics, for the

electronics, all the schematics, and the entire software, from the lowest possible level up to

whatever latest research has been developed by our students.

Why we think the robot is special? As I said, we wanted to have hands. And we put

considerable effort into the design of the hands. There are nine motors driving each hand.

And-- although, there are five fingers and 19 joints, which means some of the joints are

coupled, so the actual dexterity of the hand is all to be demonstrated, but it works to a certain

extent.

There are some sensors. It's entirely human-like. We don't have, for instance, let's say, we

don't have lasers. We don't have ultrasound or other fancy sensors that, from engineering

standpoint, could also be integrated. But we decided to stick to certain subset of possible

sensors.

There's one thing that I think is quite unique. We managed along the way to run a project to

design tactile sensors. And so I think it's one of the few robots that has almost complete body

coverage with tactile sensors. There are about 4,000 sensing points in the latest version. And



we hope to be able to use them.

I mean, you'll see certain things that we started developing. But for instance, we-- there was

discussion about manipulation and the availability of tactile sensors. We just scratched the

surface in that direction. We haven't been able to do much more than that.

As I said, we designed, also, the electronics. And the reason for doing this was that wanted to

be able to program the very low-level of the controllers of the robot. This didn't pay off for

many years, but at a certain point, we started doing torque control. And we started hacking

also the low-level controllers of the brushless motors.

And so it paid off eventually, because that wouldn't have been possible without the ability to

write low-level software. Not that many people are modifying that part of the software. It's

open-source, also, that part, but it's very easy to burn your amplifiers if you don't do the right

thing at that level.

And the other thing is that, as I said, the platform is reproducible. And at the moment there is

GitHub repository-- well, a number of GitHub repositories which contain, whatever, it's some, a

few millions of lines of code, whatever it means. It just means probably that a lot of students

are just committed to the repositories, not necessarily that the software is super high-quality at

this point.

There are a few modules that are well-maintained. And that's the low-level interfaces, which is

something we do. Everything else can be in different ranges of readiness to be used and

things.

Well, why humanoids? There were, at least at the beginning, scientific reasons. One,

paraphrasing Rod Brook's paper, Elephant's Don't Play Chess, the reason of developing

intelligence in a robot that has a human shape may give an intelligence that is also

comparable to humans, but also provides for natural human-robot interaction. The fact the

robot can move the eyes is very important, for instance, has a very simple face, but it's

effective in communicating something to the people the robot is interacting with.

And also, building a humanoid of a small size-- the robot is only a meter tall-- was very

challenging from the mechatronics point of view. So for us, engineers, was a lot of fun too--

the initial few years when we were designing, every day was very, very funny, our-- a lot of

satisfaction seeing that the robot was growing and being built, eventually.



The fact that the platform is open-source I think is also important, allows for repeating

experiments across different-- in different locations. So we can develop a piece of software

and run exactly the same module somewhere else across the world. And this may, again, give

advantages in-- first of all, debugging was a lot easier, so many people complaining when we

do-- when we did something wrong, and allowed for also, let's say, shared development, so

building partnerships with many people, mostly across Europe, because there was funding

available, so for people to work together. And this may eventually enable better benchmarking

and better quality of what we do.

As part of the project, we also develop middleware. So maybe you may think that we have

been a bit crazy. We went from the mechanical design to the research on the robot, and

passing through the software development, but actually, this was a middleware that was

started before ROS even existed. And in fact, it was a piece of my work at MIT with a couple of

the students there in 2001, 2002.

So the first version actually ran on COG and run on QNX, a real-time operating system. Later

we did a major porting to Linux, and Windows, and MacOS, which-- so we never committed to

a single version. And that because we had this community of developers from the very

beginning, and there was no agreement on what development tool to use, and so we say, why

don't we cover almost everything.

And this part of the software is actually very solid at the moment. This has been, you know,

growing, not in size, but in quality, in this case, so the interfaces remain practically the same.

And I think the low-level byte coding of the messages passing across the network didn't

change since the COG time.

Everything else changed. It is completely new implementation now. But it has portability, so as

I say, this was a sort of requirement from the researchers not to commit to anything, and so

we have developers using Visual Studio on Windows or maybe using GCC on Windows, and

other developers running whatever IDE available on Linux or MacOS. And this worked pretty

well.

And there's also language portability. We can link-- so all this middleware is just a set of

libraries, so we can link the libraries against any language. And so we have bindings for

whatever, Java, Perl, MATLAB, and a bunch of other languages. And this helped researchers

also to do some rapid prototyping maybe using Python and so forth.



As I said, the project is open-source, so you will find, if you go to the website, there's a

manual, not particularly well taken care of. It works. At least, it works with our students, so it

should work for everybody. But it also, the drawings-- so you can go with drawing like those to

mechanical workshop. And you get the parts in return. And then from those, you can also

figure out how to assemble the components.

Although it's not super-easy. It's not something you do, just because you have the drawings,

you do in your basement. I mean, one of the groups in one of our projects tried doing that.

And I think they stopped after building part of a arm and maybe part of a leg. I mean, it was

very challenging for them. And you need a very, let's say, a proper workshop for building the

components, so it takes time, anyway.

Continuing on the sensors, I mentioned that we have skin. And I'll show you a bit more about

that in a moment. But we also have force-torque sensors, and gyroscopes, and

accelerometers. So if you take all these pieces and you put them together, you can actually

sense interaction forces with the environment.

And if you can sense interaction forces, you can make the robot compliant. And this has been

an important development across the past few years that allowed the robot to move from

position control to torque control. And this has been needed, again, to go in the direction of

human-robot interaction.

And so these are standard force-torque sensors, although we designed, as usual. We spent

some time and designed the sensors. And this was a reason of cost. The equivalent six-axial

force-torque sensor, commercially, cost, I don't know, $5,000. And we managed to build it for

$1,000. So it maybe is not as super rock-solid as the commercial component, but it works well.

And about the skin, this was a sensing modality that wasn't available. And again, we managed

to get funding for actually running a project for three years to design the skin for the robot. And

we thought it was a trivial problem, because at the beginning of the project, we already had

the idea of using capacity sensing. And we actually had a prototype. And we say, oh, it's trivial.

Then we spent three years to actually engineer it to make it work properly on the robot.

So the idea is trivial, so since capacity sensing is available for cellphones, we thought of

moving that into a version that would work for the robot. There were two issues. First of all, the

robot is not flat, so we can't just stick cell phones on the robot body to obtain tactile sensing.



So we had to make everything flexible so they can be conformed to the surface of the robot.

The other thing is that the cell phones only sense objects that are electrically-conductive.

That's because the way the sensor is designed, so we had to change that, because the robot

might be hitting objects that are not-- that are plastic, for instance.

So what we've done was to actually build the capacitors over two layers. There's an outer

layer and a set of sensors that are etched on a flexible PCB that is shown there. And what the

sensor measures is actually the deflection of the outer layer, which is conductive, towards the

sensors. And in between, we have another flexible material.

And that's another part of the reason why it took so long. We started with materials like silicone

that were very nice, but unfortunately, they degrade very quickly, so we ended up running

sensors for a couple of months. And then all of sudden they started failing or changing their

measurement properties. We didn't know why. We started investigating all possible materials

until we found one that was actually working well.

The other solution we had to, basically, design was the shape of the flexible PCB. So we had

the challenge of taking 4,000 sensors and bringing all the signals somewhere to the main CPU

inside the robot. And, of course, you cannot just connect 4,000 wires.

So what we've done on the back side of the PCB there's actually a routing for all the sensors

from one triangle to the next until you get to a digitizing unit. And-- sorry, each triangle digitize

its own signals. And they travel in digital form from one triangle to the next until they reach a

micro-controller that takes all these numbers and sends them to the main CPU. And this saves

on the connection side, and so it actually enables the installation of the skin on the robot.

So this is a, let's say, industrialized version of the skin. And that's the customization we've

done for a variant arm. And those are parts of the skin for the iCub. So the components that

we just screw onto the outer body and to make the iCub sensitive.

This is another solution, which is, again, capacitive for the fingertips, simply because the

triangle was too big, too large for the size of the iCub fingertips, but the principle is exactly the

same. It was just more difficult to design these flexible materials, because they are just more

complicated to fabricate on those small sizes. And the result, when you combine the force-

torque sensors and the tactile sensors is something like this, which is a compliant controller on

the iCub, where you can just push the robot around.



This is in zero-gravity modality. So you can just push the robot around and move it freely. And

this has to be compared to the complete stiffness in case you do position control.

And another thing that is enabled by force control is teaching and demonstration. This is a

trivial experiment. We just recorded trajectory and repeated exactly the same trajectory, so it's

not-- I mean, you can do learning on top of that, but we haven't done it. It's just to show that

the fact that you can control-- the robot in torque mode enables these type of tasks, so

teaching a new trajectory that was never seen by the robot.

There's another less trivial thing you can do. Since we can sense external forces, you can do

something like this, which is, we can build a controller where you keep the robot compliant.

You impose certain constraints on the center of mass and the angular momentum, and keep

the robot, basically, stable in that configuration like this one, in spite of external forces being, in

this case, generated by a person. This is part of a project that is basically trying to make the

iCub walk, more or less, efficiently.

And as part of the project, we actually also redesigned the ankles of the robot, because,

initially, we didn't think of bipedal walking, and so they weren't strong enough to support the

weight of the robot. And this is basically the same stuff that was shown on the previous videos,

just the same combination of tactile and force-torque sensing used to estimate counter forces.

We actually added two more force-torque sensors in the ankles, so we have six overall here in

this version of the robot.

Now, as part of this, we also played a bit with machine learning. For mapping the tactile

formation and force-torque sensor information to the joints, since they are not localized on the

joints of the robot, we have-- and also for separating what we measure with the sensors from

the forces generated by the movement of the robot by its internal dynamics, we have to have

information about the robot dynamics. And this is something we can do, or we can build a

model for using machine learning, since we have measurements from the joint position

velocities and accelerations, and the torques measured from the force-torque sensors, we can

compute the robot dynamics. And this can be done either using a let's say, computer model

from the CAD, or from learning the model via machine learning.

And so we collect the data set from the iCub. In this case, it was a data set for the arm, for the

first four joints. We didn't do anything for the rest. And in this case, we used-- we sort of

customized a specific method, which has custom processes, to be incremental, and also to be



computationally-bounded in time, so we wanted to avoid the explosion of the computational

time due to the increase in the number of samples.

And this was-- well, it was basically an interesting piece of work because everything we do on

the robot, if it's inserted in a control loop, has to have a predictable computation time, and

possibly limited enough so that we can run the control loop at reasonable rates. And this is

some of the results. And actually, we also compare with other existing methods. This is just to

show that the method we developed, which uses an approximate kernel, works pretty much as

well as a standard Gaussian process regression in this case, and works much better than

other methods from the literature. This was just to have a rough idea that this was entirely

doable.

Also, by shaping the kernel, it's possible to compensate for temperature drifts. Unfortunately,

the force-torque sensors tend to change response due to temperature, not that the lab is

changing temperature, but often, the electronics itself is heating up around the robot, so it's

making the sensor read something different, and but it's possible to show that, again, through

learning, you can build a compensation also for the temperature variations just by shaping the

kernel to include a term that depends on time. This is one example of how we've done

machine learning on the robot, although the problem is fairly simple.

A problem that is more complicated is learning about objects. So in this scenario, we--

targeting is shown here, where we have, basically, a person that can speak to the robot, tell

the robot that it's a new object. And the robot's acquiring images. And we hope to be able to

learn about objects from-- just from these type of images. This is maybe the most difficult

situation. We can also lie objects on the table and just tell the robot to look at a specific object,

and so forth. Again, the speech interface is nice, because you can basically also attach labels

to the objects that are what it's seeing.

The methods we tried, in the recent past, we've done-- we basically applied sparse coding and

then regularized least squares for classification. This was basically how we started a couple of

years ago. And more recently, we used an off-the-shelf convolutional neural network. And

again, the classifiers are linear classifiers. And this, I mean, has proved to work particularly

well, but also, since we aren't the robot, we can, let's say, play tricks.

One trick that is easy to apply, and it's very effective, is actually, you're seeing an object, but

you don't have a single frame. You can actually take subsequent frames, because the robot



may be observing the objects for a few moments, for seconds, whatever. And in fact, there's

an improvement that is shown in this plot there, the one to the right. If you increase the

number of seconds you're allowed to observe the object, you improve, also, performance. And

the plot is over the number of classes, because we also like to improve on the number of

classes that a robot can actually recognize, and which was limited until, let's say, a couple of

years ago, but now, with all these new deep-learning stuff, it seems to be improving quite a lot,

and our experiments in that direction.

There's another thing that can be done, which is try to see what happens if we have-- since we

have, again, the robot interacting with people for entire days, if we collect images on different

days, and then we can play with different conditions on the testing case. So for instance, the

different plots here show what happens if you train and test on the current day, so you train

cumulatively on up to four days and you test on the last day only. And you see, of course,

performance improve as you increase the train set.

Conditions may be slightly different from one day to the next. Light may have changed, just

because it was more a sunny day or a cloudy day. And the other conditions are to test also on

past days or to test on future days, so where conditions may have changed a lot. And in fact,

performance is slightly worse in that situation.

OK and this is a video that shows, basically, the robot training and some of the experiment on

testing how the robot perceives a number of objects. And unfortunately, there's no speech

here, but this basically a person talking to the robot and telling the robot what is the name for

this specific object, then putting another object there, drawing the robot's attention to the

object, and then, again, telling the name. This is the Lego. It becomes faster in a moment.

OK, and then you can continue training basically like that. And the video shows also testing--

was showing a bunch of objects simultaneously to the robot. And here, we simply click on one

of the objects to draw the robot's attention. And on the plot there, you see the probability that a

given object is being recognized as the correct one.

OK, I think I have to cut this short, because I'm running out of time. Another thing I wanted to

show you is, basically, now we have this ability to control the robot. We have the ability to

recognize objects. We also have the ability to grasp objects.

And this is something that uses stereo vision. And in this case, what we wanted to do is to

present an object to the robot, no prior knowledge about the shape of the object. We take a



snapshot. We reconstruct a stereo pair. We have to construct the object in 3D.

And then we apply optimization, constrained optimization, to figure out a plausible location for

the palm of the hand. And then that will maximize the ability to grasp the object by closing the

finger around that particular position. This is our, let's say, definition of power grasp. So put

the palm of the hand of the robot in a region of the object that has a surface, which has a

similar shape or a similar size of the palm itself, and where the orientation is compatible with

the local orientation of the surface.

And this works with mixed results. So it works with certain objects. It doesn't work always.

There are objects that are intrinsically more difficult for this procedure, so some of them will

only be grasped with 65% probability, which is not super-satisfactory.

If you run long experiments, you want to grasp three, four objects, you start seeing failures. It

becomes boring to actually do the experiments. So it works well for soft objects, for instance,

as expected.

We moved a bit into the direction of using the tactile sensors, and-- but at this point, we've only

been able to try to characterize forces out of the force of the tactile sensor measurement. So

we-- basically, taking a fingertip, we have 12 sensors, and we're trying to-- and this is another

case where we apply machine learning trying to reconstruct the force direction and intensity

from the tactile sensor measurements.

And this is basically the procedure, is we take the sensor. We move our six-axial force-torque

sensor. We take the data. And we approximate this, again, with a Gaussian process.

Just one last video, if I can. OK, so basically, we've put together all these skills. We may be

able to do something useful with the robot. In this case, the video shows a task where the

robot is cleaning a table. And it's actually using the grasp component, and the ability to move

the object, to see the object, recognize them, and grasp them, and put them at a given

location, which was pre-specified, in this case, so it's not recognized that this a container. It's

just putting things there.

And there's one last skill that I didn't have time to talk about, which is recognizing certain

objects as tools, and one specific object, like this one. An object like the tool here can actually

be used for pulling another object closer. And this is, again, something that can be done

through learning. So we learn the size of the sticks or set the sticks, and we also learn how



good they are for pulling something closer through experience, by, basically, trial and error

over many trials.

And the result is that you can actually generate a movement that pulls the object closer so

they can later be grasped. And that's basically a couple of ideas on how to exploit the object

affordances, not just recognizing them, but also knowing that certain objects have certain extra

functions which may end up being useful.

OK, I just wanted to acknowledge the people that are actually working on all this. I promised

that I will do that. And this is actually a photo around Genoa showing the group that has been

mainly working on the iCub project over-- let's say, this is the group last year, so there may be

more people that just left, or some of them moved to MIT. OK, thank you.


