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Machine Recognition of Speech
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signal processing

pattern classification
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Signal processing, information
theory, machine learning, ...

What can | help you with?
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Why to rock the boat?
We have good thing going.




Repetition, fillers, hesitations,
interruptions, unfinished and
non-gramatical sentences, new
words, dialects, emotions, ...

Current DARPA and IARPA
programs, research agenda of
the JHU COE HLT’ indUStrlal © Source Unknown. All rights reserved. This
efforts (Goog|e’ Microsoft, IBM. content is excluded from our Creative

’ Commons license. For more information, see

———

© ASUS. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
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Signal processing, neural information processing,
information theory, & psychophysics, physiology, cognitive

machine learning, ... science, phonetics and linguistics, ...

Engineering and Life Sciences together!
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.. or at least engineering inspired by life sciences
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first child

my mother’s 2" marriage
my father’s 3" marriage
was born of 6" of July
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Auditory perception

object

How to survive In
this hostile
world?

perceived signal

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

What is the message (is there a
danger or opportunity ?

© Source Unknown. All rights reserved.This content is

excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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How to survive in this world?

“Eat vegetables, they “Eat vegetables, they
are good for you” are good for you”

] © Source Unknown. All rights reserved. This content is
© PBS. All rights reserved. This content is excluded from excluded from our Creative Commons license. For more
our Creative Commons license. For more information, see information, see https://ocw.mit.edu/help/fag-fair-use/.
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Why machine recognition of speech?
;.‘ : Why did | climbed Mt. Everest?

Because it is there !
-Sir Edmund Hilary

Spoken language is one of the most amazing
accomplishments of human race.

" \'\ .-’
© Sir Edmund Hillary & John Cleare with
Transworld Publishers. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.

Addressing generic problems with human-like information processing (vision, e.t.c.)

access to information

 voice interactions with machines
« extracting information from speech data !

Job security - it will not be fully solved within your lifetime ©
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Speech

* Produced to be perceived

— We speak in order to be heard in order to be understood
Roman Jakobson

* Evolved over millennia to reflect properties of
human hearing



Organs of speech production

Life sustaining functions: K stiffen
* eating breathing { the body
° I | AR
breathing —1L
e (and speaking)
eating D)
/Z protect
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: o \ lungs from
eating \ ' food
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How to survive in this world?

“Eat vegetables, they “Eat vegetables, they
are good for you” are good for you”

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more

© PBS. All rights reserved. This content is excluded from information, see https://ocw.mit.edu/help/faq-fair-use/.

our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.

What is the message?

cognitive aspects
e common code (language), context, prior
experience, ...
reliable signal carrying the message
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Information in speech signal

C = Wlog, [(STN)/N)], H(s)=->_p;-log(p;)

W-signal bandwidth, i-1

S-power of signal, N-power of noise p, - probability of i -th symbol

W — about 8 000 Hz C about 80 kb/s

(S+N)/N - about 103 . _

log, 1000 — about 10 41 phonemes in English
H=log,41 = 5.4 bit/phoneme

standard PCM coding about 15 phonemes/s

8 kHz sampling, 11 bit 15x 5.4 =80 bps

accuracy = 88 kb/s 150,000 words — about 18 bits,

300 words/min — 90 bits/s

considering relative frequencies of phonemes and phonotactic rules, the
information in each phoneme decreases to about 1.5 bit/phoneme

15-25 bps ! (of course no other info but the phoneme sequences)



environmental noise

health information who is speaking

language mood
message JUB9e  message .

emotions social status
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signal = message (wanted information)
noise = everything else (unwanted information)

Get signal which carries desired information and ignores noise

The problem is NOT how to use all information but
how to quickly IGNORE most of the information



level [dB]

frequency [Hz]
125 250 500 1000 2000 4000 8000

leaves
0
birds
20 Water running
clock
40
speech
60 baby car noise
dog telephone
80 piano  ringing
motorcycle
100 chain saw
120 rock band

Selectivity of perception

» different frequency
spans

» different sound
intensities

» different spectral and
temporal dynamics

e different locations in
physical space

e.t.c.

other

* selective attention
(Mesgarani, Chang,..)
* e.t.c



Human Speech Communication

message
oeeeneees > linguistic code (~ 50 b/s)

motor control

speech production

SPEECH SIGNAL (> 50 kb/s)

speech perception

cognitive processes
linguistic code (~ 50 b/s)
message




Producing speech

We speak in order to be heard in order to be understood
Roman Jakobson

© PBS. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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H. Dudley 'The carrier nature of speech ’, Bell
System Technical Journal, vol. 19 (1940)

}, Inaudible message in slow motions of
N vocal tract is made audible by
carrier message modulating the audible carrier

-Dudley 1940

© Wiley. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.

Source: Dudley, Homer. "The carrier nature of speech."
Bell System Technical Journal 19, no. 4 (1940): 495-515.
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' speech

CARRIER
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Producing speech

Johann Wolfgang Ritter von Kempelen de Pazmand

"sh" lever ,.-//J\“m

sh" whistle "'f reed cut-off T
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speech I J! \. "s" levar
sounds l / X

come out 7 i —— -

here \‘ Q&’ -

resonator Q:
of leather
\\.
awaliary "s" whistle
bellows
leather nostrl

o read

—_—

compressed
air chamber

This image of Wheatstone's construction of von Kempelen's speaking machine is in the public domain.
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Mechanical Turk

Johann Wolfgang Ritter von Kempelen de Pazmand

This image of the automaton chess player of von Kempelen is in the public domain.
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Speech production
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with pe;‘mission.
Source: Dudley, Riesz, and Watkins, "A synthetic speaker," Journal of the Franklin
Institute. 227, 739 (1939).
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VODER
(Homer Dudley 1939)

© Wiley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Dudley, Homer. "The carrier nature of speech." Bell System Technical Journal
19, no. 4 (1940): 495-515.
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* Constraining the tube af the point of its
maximum velocity of the mode is the most
efficient way to lower the mode frequency

* Constraining it at the point of its maximum
pressure lower the mode frequency
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constriction
(TONGUE?)
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resonance frequencies of synthetic vocal tracts (formants)

first resonance of the front cavities of synthetic vocal tracts

Overall tract length 24 cm Overall tract length 14 cm
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© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hermansky, Hynek, and D. J. Broad. "The effective second formant F2'
and the vocal tract front-cavity." In Acoustics, Speech, and Signal Processing,
1989. ICASSP-89.,1989 International Conference on, pp. 480-483. IEEE, 1989.

length of the front cavity of the synthetic vocal tracts [cm]

adopted from Hermansky and Broad ICASSP 1990

24


https://ocw.mit.edu/help/faq-fair-use/

Hearing

We speak in order to be heard in order to be
understood
Roman Jakobson

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Place theory of peripheral auditory processing

bank of cochlear band-pass filters firing rate depends on sound intensity
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© Source Unknown. All rights reserved. This content is
excluded frm our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Figure of auditory processing from inner hair cells to auditory cortex
removed due to copyright restrictions. Please see the video.
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Brain wetware

cortex

periphery

10 Hz

speed
of
firing

1 kHz

100 M

number
of
neurons

100K
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Figure of auditory processing from inner hair cells to auditory cortex
removed due to copyright restrictions. Please see the video.

Figure of auditory processing from auditory cortex to hair cells
removed due to copyright restrictions. Please see the video.
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© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Auditory cortical spectro-temporal receptive fields

Obtained through a kind of
“spike triggered averaging”
(dynamic ripples as inputs)

Figure removed due to copyright restrictions. Please see the video.

Many different
STRFs

Courtesy of S. Shamma UMD lab
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© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/. SaChS et al 1988
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Psychophysics

stimulus . response
perception

(whole system)

« What is the response of the whole organism to a
stimulus?

 Present the stimulus and ask

32



Threshold of hearing

can you hear it?

80 highly frequency-dependent

acoustic pressure 20 pPascal at 1 kHz is 0 dB spl
60

 free field measurement (mike in place of the ear)
40 * Onhe ear
» time longer than 200 ms

20

acoustic pressure [dB spl]

N ) ) O
0 315 63 125 250 500 1000 2000 4000 8000 12500

frequency [HZ]



when signals are applied in in both ears, threshold for each is @, =0,/ 2
(signals integrate)

the tones do not have to occur simultaneously as long as they are within 200 ms

O/ 2 L left ear
oy /2 [ right ear

<200 ms

TIME

when two tones in one ear, the threshold ®, =04/ 2,

as long as the signals are “close” in frequency
(within “critical band”)

T4 o

Af < critical

34



Simultaneous masking

H'--I_I_I—I_I_I_I_I—I_
dB

1 60 - masker I
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0 threshold |’
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masked threshold
- target -
o b i
0,02 005 01 02 03 1 Fd 2 10 20 kHz
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Simultaneous Masking (Fletcher 1940)

band-pass filtered
noise centered at f

what happens outside
the critical band
does not affect

decoding of the
sound in the critical
tone at f band

critical
threshold of bandwidth
perception v
of the tone @ @ ¢ @ @ @ @ O

@

T O

— » noise bandwidth
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critical bandwidth [HZ]
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«critical bandwidth™ again
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remember ?

(K RV

Af <
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MaSking in Time rgmember?

BM"'II 2 | left ear
o./2 [ right ear
< 200 ms
1 TIME

o to+ At t_+ 200 ms

ttt

L t,+ At t.+ 200 ms

— what happens outside the critical interval, does not affect detection
of signal within the critical interval

38



Loudness

how much louder is one sound comparing to another?

loudness = intensity 9-33

intensity = signal 2 [w/m?]

for stimuli longer than 200 ms

loudness [Sones]

39



Equal loudness curves

Figure of equal loudness curves removed due to copyright restrictions. Please see the video.
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Perception of modulations
(Riesz 1923)

LO 1 1 I i I 1 1
- - change the depth of
N modulation and modulation
7 frequency
7 is the signal modulated
] or not?
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! { L ] I ] _
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1Rl LIL (1 A _ Al 111 1 {1
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modulation frequency

~

© American Physical Society. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Riesz, R. R. "Differential intensity sensitivity of the ear for pure tones." Physical
Review 31, no. 5 (1928): 867.
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Modulation spectrum of speech

e

Sme—

Frequency

Sto,) _. .
Time trajectory

with mean removed
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analysis
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Modulation frequency

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Rhythm

Perception of rhythm: tap on a Morse-code key to the rhythm of the sound

modulation
frequency of
music pieces

\6.

rel. fluctuation strength

1

sensitivity of

60 pieces of musiC  hearing to Speech sentence
centre frequency modulations
02505 1 2 4 8 16 32H
oo T ‘\\' ' ‘zmﬁT”
/ \Ar"”” .
80\ 180 ¢
60| . eog
Lo} \\ {40 &
\ z
20+ I Y, qm =
1 P
5 1 2 T .

8

histogram of tapping frequencies

16 32Hz

OO
modulation frequency

In average 4 taps per s

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/.
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Where is the information ?

frequency

O O O O O O

;

time
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System Technical Journal, vol. 19 (1940)

Inaudible message in slow motions of
\ vocal tract is made audible by

\ modulating the audible carrier

-Dudley 1940

i

carrier message

© Wiley. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.

Source: Dudley, Homer. "The carrier nature of speech."
Bell System Technical Journal 19, no. 4 (1940): 495-515.

TN s | |
d e
/
\ /
S

CARRIER

H. Dudley 'The carrier nature of speech ', Bell

' speech
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VOCODER
(H. Dudley, U.S. patent US2194298 A 1939)

Analyzer Transmission  Synthesizer

| * Predictability (production)

Band-pass Recti- Low-pass | Modu la- Band-pass

filters fiers filters :tors filters — speech waveform changes
' 13 ” . . .
_ gggI-I M | 20H2 _:_____J:_ ggg; u slowly” (inertia of air mass
z | Bl z in vocal tract cavities)
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_L’g\}%e,ée ! | . — spectral resolution of hearing
detector t : I Switch . .
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———— - ) )
‘ | ! at higher frequencies
| | Pitch ! : | Pulse Noise
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© Homer Dudley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Figure removed due to copyright restrictions. Please see the video.
Source: Dudley, Homer, and Otto O. Gruenz Jr. "Visible speech translators with external
phosphors." The Journal of the Acoustical Society of America 18, no. 1 (1946): 62-73.
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spectrogram through band-pass filtering

bank of
— bandpass
filters

time

fourier
transform
of short
segments of
signal
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time
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EER2222
frequency

frequency
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environment

message
code health information  who is speaking
language message mood
emotions social status

y &)

7/

Machine recognition of speech:
Transcribe the code which carries the message

50



Speech

* Produced to be perceived

— We speak in order to be heard in order to be understood
Roman Jakobson

* Evolved over millennia to reflect properties of human
hearing

 Machine recognition of speech is a powerful way to
support perceptual theory.

51



Better understanding of human perception through
studying successful engineering solutions?

Listening for the message in speech is not the only task that
human auditory perception must accomplish. Knowing
what to emulate and what not when recognizing the
message in speech is important. We suggest that one way
to proceed is to focus on successful and well accepted ASR
solutions and compare their properties with what we know
about the perception of signals, and of speech in particular.
Often, the engineering solution turns out to be a reflection
of particular characteristics of hearing.

Hynek Hermansky, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the
IEEE 101.9 (2013): 1968-1985.
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message
health
language

noises emotions

who is speaking
mood
social status

SPEECH SIGNAL
high bit rate

RECOGNITION

% RECOGNIZER =

4
KNOWLEDGE

e.g., text describing the
message

INFORMATION
low bit rate
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Knowledge

* From textbooks, teachers, intuitions, beliefs, ...

— hardwired, so no need to learn it over and over again
but

— incomplete, irrelevant, can be wrong

* Directly from data

— relevant and unbiased
but

— large amounts of (transcribed) data may be required
— how to get architecture of a machine from data ?

54



Concept of the first “real”
automatic speech recognizer
(R.H. Galt 1951)
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© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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] 11 ” . .
First “real” recognizer ever build
(Davis, Biddulph, Balashek 1952) Automatic Speech Recognition of Spoken Digits, J. Acoust. Soc. Am. 24(6) pp.637 - 642

Courtesy of The Acoustical Society of America. Used with permission.
Source: Davis, K. H., R. Biddulph, and Stephen Balashek. "Automatic recognition of spoken
digits." The Journal of the Acoustical Society of America 24, no. 6 (1952): 637-642.

56



speech recognition in 215 century?

training data containing
ALL
sources of anticipated
harmful variability (noises)

.

single flat

o P b
neural net

© Source Unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.

speech message
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needs to hear
a hungry bat
and to avoid it

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

brain

tuned to 25-50 kHz bank of parallel
bandpass filters

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

needs to
understand
speech

brain

medial geniculate
body

§

inferior colliculus

lateral lemniscus

superior olivary
complex

§

<«» cochlear nucleus
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: *WWW .

training data containing
ALL
sources of anticipated
harmful variability (noises)

.

highly structured
deep neural net
convolutive pre-processing,
recurrent structures, . speech
long-short-term memory, message
hierarchical subsampling
(connectionist temporal classification),

e.t.c.
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A reasonable compromise ?

training data containing noise with
unknown effects

¥

structured
features -

speech signal  _5 —>» wanted information

(representation) machine

L

noise with known effects

..... we suggest that the fundamental challenges in neural modeling
are about representation rather than learning per se

Stuart Geman, Elie Bienenstock, and René Doursat. "Neural networks and the
bias/variance dilemma." Neural computation 4.1 (1992): 1-58.

Features (representations)
* wanted information, which is lost in this stage, is lost for recognition forever
* unwanted information (noise), which is kept needs to be dealt with in later stages

Features can be also designed using development data !
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carry-over from 20t century
speech signal

v

derive features x — «— ~10ms

— time

| estimate likelihoods p(x/ m.), where m; are constituents (samples of speech sounds) of M

stochastic search

¥

sil

works

W = argmax; p(x|M,) P(M)) <— language model and lexicon

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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hello world
h e | o- w o r | d
| ol 1l o

LA’

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.

coarticulation+ talker idiosyncrasies + environmental variability = a big
mess
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Two dominant sources of variability in speech

1. different people sound different, communication environment different,...

(feature variability)
2. people say the same thing with different speeds (temporal variability)

w=argmax (P(M(w; )| X)) Model parameters from training data
' How to find unknown utterance w ?

Form of the model M (w;) ?
W oc arg max(p(x| M (w;,)P(M (w;)") What is the data x ?

through (modified) Bayes rule

“Doubly stochastic” process (Hidden Markov Model)
Speech as a sequence of hidden states (speech sounds) - recover the sequence

1. never know for sure which data will be generated from a given state
2. never know for sure in which state we are in
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f,= 195 125 140 120 185 130 145 190 245 155 130 Hz

hi hi hi hi hi hi hi hi hi hi hi

P(sound|gender) These parameters

ﬁ\\/ 1p. (ﬁ\\/ ﬂm ?re typically Izarned
rom training data.
m D)= G

—>f0

U P4 - Probability of the first group being male group
p, — probability of group having n subgroups

Want to know

where are the boys (or girls) ?
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speech signal

y derive features x o ~10ms — time

| estimate likelihoods p(x/ m,), where m; are constituents (samples of speech sounds) of M

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.

connectionist temporal classifier

w| leh] [k| [s| |oh | f] Jaa] |r| [t{laq||r||b]||ei||s]||t

works of art are based

A.Graves et al, Proc. ICML 2006
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Features (representations)

speech signal

y derive features x < ~10ms — time

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.

Features (representations)
* wanted information, which is lost in this stage, is lost for recognition forever
* unwanted information (noise), which is kept needs to be dealt with in later stages

1. One of important tasks of perception is to focus on relevant information
(eliminating the irrelevant)
2. Feature extraction may benefit from emulations of relevant properties of
hearing
3. Features can be also designed using development data (current trend)
 what emerges, is very likely relevant to speech perecption
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Artificial Neural Nets

Most efficient (smallest) set of features are posterior probabilities of classes

posteriogram

neural network
estimating
posteriors of
speech sounds

pre
processing

-
—-F DOl <N

signal

EEERE

Z2Oomean

180 200 220 240 260 280 300 320 340 360 380

Classes — speech sounds:

* context independent phonemes
* context dependent phonemes
e parts of context dependent phonemes
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a) Convert (divide by training priors) posterior probabilities
to likelihoods for Viterbi search for the best word
sequence

Bourlard and Morgan, NIPS 1990

b) bottleneck (TANDEM)

output from — .
inside of — optional —
neural network .  additional — features for HMM/GMM
estimating —»  processing —
posteriors of —  (PCA,LDA)
speech sounds —

Fontaine, Ris and Boite, Eurospeech 1997
Hermansky, Ellis and Sharma, ICASSP 2000
Grezl, Karafiat, Kontar, Cernocky, ICASSP 2007
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environment

message
code health information  who is speaking
language message mood
emotions social status

W’” W“ s

signal = message (wanted information)
noise = everything else (unwanted information)
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Not all noises are created equal

* expected and effects are partially understood

e.g. linear distortions

e expected but effects are not well understood
e.g. various environmental noises

* unexpected
e.g. unexpected distortions - the real problem

training data containing noise with
unknown effects

¥

speech signal —» features —  machine —  wanted information

~

noise with known
effects

70



Noise with known effects



Harmful information about speaker

(speaker variability)

short-term spectrum

5000 pmaes
the same message adult male 3
4000 F
« different vocal tracts 3 3000
. . ()]
» different speech signals 2 oo |
Lt ]
1000 ¢
0
5000
4 year old child
4000 fEE S
?3000: = R =2k
. u'ﬁ_ . X :-._ — —— »_:E-;
S 2000 [, Mm-S T— 3
t R e o e
_F’-‘T: e gy B . — -" -
1000 [ TR o]
g— ey
- ] =
0—————"'"—5'--, e e
01 02 03 04 05 06
Time

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,

no. 9 (2013): 1968-1985; DOI: 10.1109/IJPROC.2013.2252316.
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Perceptual Linear Prediction

Limited spectral resolution

formant clusters as may be interpreted by auditory perception

Perceptual Linear Prediction (PLP)

critical-band (Bark) spectral analysis
loudness domain (cubic root of intensity)
equal loudness curve (at 40 dB)
autoregressive spectral fit (fits well at peaks)
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Equal loudness curves

Figure of equal loudness curves removed due to copyright restrictions. Please see the video.
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Spectral resolution of hearing

spectral resolution of hearing decreases with frequency
(critical bands of hearing, perception of pitch,...)

threshold of
perception
of the tone

critical
bandwidth

v

S

noise bandwidth

10000

5000
2000
1000

500

100
50

critical bandwidth [Hz]

50 100

500 1000
frequency [Hz]

5000 10000
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Figure removed due to copyright restrictions. Please see the video.
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© The Acoustical Society of America. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hermansky, Hynek. "Perceptual linear predictive (PLP) analysis of speech." The Journal
of the Acoustical Society of America 87, no. 4 (1990): 1738-1752.
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intensity = signal 2 [w/m?] loudness [Sones]

300 . —_— — _ _
loudness = intensity 9-33
‘gzoo-
o intensity
‘3 100} - (power spectrum)
(@
. ) .

2 4 6 8 10
Sound pressure

(=8

|. |O.33

loudness
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Perceptual Linear Prediction (PLP)
Autoregressive fit to the auditory-like
spectrum

power v\ N
(loudness) | /)

frequency (tonality)




Perceptual Linear Prediction

Wi,
V'JWJJH
I~“ \M
SPEECH
| | !
\\ CRITICAL BAND INVERSE DISCRETE
\ ANALYSIS FOURIER TRANSFORM
i . S l l
EQUAL LOUDNESS SOLUTION ran
PRE-EMPHASIS AUTOREGRESSIV
} J COEFFICIENTS
} - \ l
INTENSITY=LOUDNESS
A CONVERSION ALL-POLE MODEL
\
1

© The Acoustical Society of America. All rights reserved. This content is excluded from our /
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hermansky, Hynek. "Perceptual linear predictive (PLP) analysis of speech." The Journal
of the Acoustical Society of America 87, no. 4 (1990): 1738-1752.
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Optimal Amount of Spectral Smoothing
(order of PLP autoregressive model)

@ 65 ] I F———
- - ' ;
0 60— T
11 o -
b ~ euf
. 3
o 55 T
q - ]
5 sof +
= AR N A S I S S B N S
& 45 Loif- TWO.Spectral i NG I
o [ ¢ | Paaksi i i i ]
r 40 f—f—db—+————

o 1t 2 3 4 5 6 7 8

Number of Complex Poles

Courtesy of Elsevier, Inc., http://www.sciencedirect.com.
Used with permission.

Source: Hermansky, Hynek. "Should recognizers have ears?"

Speech communication 25, no. 1 (1998): 3-27.

cross-speaker ASR (trained on
one speaker and tested on
another)

all speaker-dependent information
harmful
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adult male

4 year old child

5000

Frequency

Frequency

short-term spectrum 5t order PLP s

pectrum

= e e

01 02 03 04 05 06 10 20 30 40
Time
© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.

50 60
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X-rays of Male and Child Vocal Tract in
Production of Vowels

* |n production of
vowels, the front part
of the vocal tract
appears to be less
speaker dependent
than its back part

— Hermansky and Broad
ICASSP 1990

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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Figure removed due to copyright restrictions. Please see the video.

Source: Hermansky, Hynek, and D. J. Broad. "The effective second formant F2'
and the vocal tract front-cavity." In Acoustics, Speech, and Signal Processing,
1989. ICASSP-89.,1989 International Conference on, pp. 480-483. IEEE, 1989.

Hermansky and Broad ICASSP 1990, Hermansky JASA 1990,
Hermansky, Cohen, Stern, Proc. IEEE 2013

84



Listening for Shape of Front Cavity of Vocal Tract ?

message

P4 N

encode decode

v t

shape of perceptual second
front cavity formant F2’

v t

speaker-dependent speech
vocal tract perception

Ny speech /

spectrum

Hermansky and Broad ICASSP 1990, Hermansky JASA 1990



Data Do Not Lie

Prof. Frederick Jelinek: “Airplanes don’t flap their wings”.

S. Lohr, New York Times, March 6, 2011

“Airplanes do not flap wings but have wings nevertheless,.....

Of course, we should try to incorporate the knowledge that we
have of hearing, speech production, etc., into our systems,....but
we need to estimate the parameter values from the data. There is
no other way

F. Jelinek, Five speculations (and a divertimento) on the themes of H. Bourlard, H.
Hermansky, and N. Morgan, Speech Communication 18, 1996. 242-2
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Linear Discriminant Analysis (LDA)

Linear
discriminants:
eigenvectors of
S\wSg

S\ - Within-class

covariance matrix
S; - between class
covariance matrix

 Needs labeled data
* Within-class distributions assumed Gaussian
with equal o (take log of power spectrum)

LDA
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Linear discriminant analysis (LDA) on short term spectral vectors

frequency
i

r

Jil [ul| 1a| 1l ot | 1t | fof |

time
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LDA vectors from Fourier Spectrum
(OGI 3 hour stories hand-labeled database)

Discriminant Vector 1

0.3

0 1 2 3 4

Discriminant Vector 3
0.3 '

0 1 2 3 4
Frequency (kHz)

© ISCA. All rights reserved. This content is excluded from our Creative Commons

Discriminant Vector 2

0.3

0 1 2 3 4
Discriminant Vector 4

0.3

0 1 2 3 4
Frequency (kHz)

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek. "Data-guided processing of speech." In Workshop on

Spoken Language Processing. 2003.

« Spectral resolution of LDA-
derived spectral basis is
higher at low frequencies

Psychophysics:
Critical bands of human
hearing are broader at
higher frequencies

Physiology:
Position of maximum of
traveling wave on basilar
membrane is proportional
to logarithm of frequency
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4 discriminants
(92 % of variance)

1 period / octave

 resolution
decreases with
frequency

* resolution
coarser than
critical bands

4th discriminant

0408 16 - 32kHz

© ISCA. All rights reserved. This content is excluded from our Creative Commons

license. For more in formation, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek. "Data-guided processing of speech." In Workshop on

Spoken Language Processing. 2003.
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30 hours of Resource Management and Switchboard labeled speech data (courtesy of
SRI)
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Eigenvalues of the discriminant matrix

Spectral discriminants

1.0

0 T

first 16 eigenvectors

100
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Spectral sensitivity of projections

* Perturbation analysis Shift in u constant on

— project Gaussian shape on the Hz scale
the first 16 spectral basis
and evaluate the effect of

the shift in u by 30 Hz as log spectral
the function of n Euclidean
distance
due to the
ousO e shiftin n

€«

first 16 — 2
LDA basis

Decreasing spectral sensitivity with increasing frequency
- consistent with spectral resolution of hearing
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Sensitivity to Spectral Change

(Malayath 1999)
Cosine basis LDA-derived basis Critical-band filterbank
0.06 - : - . 0.06 0.06 : . . :
g 0.04 | 0.04
§ 0.02 0.02

0 ' - ' ' 0 - ' ' - 0 ' - ' '
o 1 2 3 4 o 1 2 3 4 o 1 =2 3 4

Frequency (kHz) Frequency (kHz) Frequency (kHz)
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Linear distortions (filtering)

original speech filtered speech

7

(o
\J )
filter
s 9 =
L |
g g
&= _ &=
time time

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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Effect of fixed linear distortions

X(t) = s(t) *e(t)
log[FT{s(t) *e(t)}] =log S(w) + log E(w)

* Convolution of speech with impulse response
of the distorting filter

* Results in different additive constant at
different frequencies in logarithmic spectral
domain



Spectral analysis in ear

high frequencies

spectral
energies in
critical bands

WHL

ow frequencies

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

Ear is frequency selective in order to yield frequency-
localized temporal patterns for processing by higher
processing levels in hearing.
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Exploiting spectral selectivity in
engineering

. Separate speech into different frequency

channels

Do independent processing in each frequency
channel

98



RASTA processing

inspired by Marr 1974
“lightness” = luminance with slowly
varying components removed

Figure removed due to copyright restrictions. Please see the video.
Source: Hermansky, Hynek, and Nelson Morgan."RASTA processing
of speech." IEEE transactions on speech and audio processing 2, no.

4 (1994): 578-589.

Hermansky and Morgan 1994

0 300
time [ms]

logP’(w,,t)

W

TR
l Ll

R

© IEEE. All rights reserved. This content is excluded from time
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.
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frequency

original speech filtered speech

spectrogram

spectrogram from RASTA

rﬂ |

© IEEE. AII rlghts reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/. t|me
Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual

properties of current speech recognition technology." Proceedings of the IEEE 101,

no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.

Environmental mismatch in training and in test
matched mismatched

conventional 2.8 % error 60.7% error

RASTA 2.2 % error 2.9 % error
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Linear Discriminant Analysis on Temporal Vectors

frequency

lil

time

labeled data — labeled temporal vector space — LDA FIR FILTER IMPULE RESPONSES
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impulse responses

van Vuuren and Hermansky 1997,
Valente and Hermansky 2006

-500 0 500 -500 0 500 similar filters at all

time [ms] time [ms]

frequency responses

attEnua;r_ion [dB]
&

0.1 1.0 10.0
modulation frequency [Hz]

modulation frequency [Hz] modulation frequency [Hz]

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual

properties of current speech recognition technology." Proceedings of the IEEE 101,

no. 9 (2013): 1968-1985; DOI: 10.1109/JPR0OC.2013.2252316. 102
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DNN with convolutions in time

layer N

probability
> 000> > of speech
sound

signal = signal =~ " ">

frequency
e
a
G
a
O
o
processing layer 2

processi

o000 o0
<L
L

oer 00 oo

© Source Unknown. All rights reserved. This content is tlme
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

with Peddinti, Pesan, Vesely and Burget
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filter impulse responses

~ 200 ms
> <
-|:|4 T ! ! ! l.ﬂ T T T T T 1-2 T T T T T
el - 1.":" -
0.5F .
0.2 "'.'III' ] H".., | |'|| 1
0.0p s i T
£ 0.0, IL/M & Hﬁ".ll £ 04} | ]
< 0.5 1 1< ozt
=02 \k | ||
1ol ! 0. ﬂr“v"’rHH’I
—0.4k . -0.2 II/‘-
1.5 1 1 1 1 1 -|:|.4
0 11:'21331:'41:' 51:' 60 0 1020 3040 50 & o 1ﬂ2ﬂ3ﬂl4ﬂ 50 &0
_ Samples Samples Samples
filter frequency responses
1of 10k AN 1o} ]
0 ' \ )
— | _ o 1 - 9 1' ]
E .10t ||| E 10k \ E 1ok
20 20k ml =20
=30} 30k -30F
,__4 EEEETETIT BN ETTT | B T T ._4 TR BN ETET B T
E'-l 10 100 4%.1 1.0 100 %.l 1.0 100
[Hz] [Hz] [Hz]

Courtesy of Interspeech. Used with permission.
Source: Pesan, Jan, Lukas Burget, Hynek Hermansky1, and Karel Vesely. "DNN
derived filters for processing of modulation spectrum of speech.” In Sixteenth

Annual Conference of the International Speech Communication Association. 2015.

Pesan, Burget, Hermansky, Vesely Interspeech 2015
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Auditory cortical receptive fields

Neuron 1 Neuron 2
8 w
N .
$ ks
> 0.25
5 Neuron 3 Neuron 4
= 8 -
g - - -
w
0.25
0 0.25 0 0.25
Time (s)

Thomas et al INTERSPEECH 2010

© Interspeech. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.

Source: Thomas, Samuel, Sriram Ganapathy, and Hynek
Hermansky. "Cross-lingual and multi-stream posterior
features for low resource LVCSR systems." In Interspeech,
pp. 877-880. 2010.

0dB

-20dB |

-40 dB — lst (78%)
P — 2nd (8%)
——— 3rd (2%)
1 10
modulation frequency (rate) [Hz]

0.8 w
—1s(48%)

0.6+ —2nd(18%) |
—3rd(6%)

04 Temporal principal components from

about 2000 cortical receptive fields

Mahajan, Mesgarani, Hermansky,
INTERSPEECH 2014

50 100 150 200 250
Time (ms)

Courtesy of Interspeech. Used with permission.
Source: Mahajan, Nagaraj, Nima Mesgarani,
and Hynek Hermansky. "Principal components
of auditory spectro-temporal receptive fields."
In INTERSPEECH, pp. 1983-1987. 2014.

ignoring phase shifts
(principal components of magnitudes of
temporal components of STRFs)
Mahajan and Hermansky, in
preparation
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Slow Modulations and Speech Communication

Human and machine recognition experiments
(with Kanedera, Arai, and Pavel 1999 )

45 %
g % O perceptual
- = experiments
£ @ £
0 L4 =3 o i an
g 2 @ < M automatic word | |
Original | = 7 * O o recognition
g g- ¢ O Q experiments
Speech | o o T p
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i a Filter = &
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o E o
Filter o
c
o
e}
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P 0
o
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range of modulation frequencies [Hz]

© Speech Communication. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Slow Modulations and Speech Communication

Inaudible message in slow motions of
vocal tract is made audible by
modulating the audible carrier

-Dudley 1940 Flow chart of sound filtering removed due to
copyright restrictions. Please see the video.

Information about a message is in
slow changes of speech signal in
individual frequency bands
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Slow modulations — long time spans |
(5 Hz ->200 ms)

* frequency discrimination of short stimuli improves up to
about 200 ms

* |oudness of equal-energy stimuli grows up to about 200 ms

* minimum detectable silent interval indicates time constant
of about 200 ms

e effect of forward masking lasts about 200 ms
* sub-threshold integration of speech sounds within 200 ms
e e.t.c.

syllable-length buffer of human hearing ?
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Where are speech sounds (phonemes) ?

h e I o-wor | d

about 7 ms

<+
about 200 ms .
time

A

v

> 200 ms

A
v

classifier

h e I o-wor | d

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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TRAPS

Hermansky and Sharma, ICSLP 1998

conventional

~ 100 ms
)
c
()
>S5
[on
g
\l, time
neural net vector of posterior probabilities
probability estimator of speech sounds
Classifying TempoRAIl Patterns of Spectral Energies
~ 1000 ms
9 .
o |
> e
g , e ,
Y i - | \
time
I neural net
— probability estimator \ merging
; neural net neural net
processing
=2 probability estimator = probability =2
processing __g, neural net estimator

probability estimator

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

vector of
posterior
probabilities
of speech
sounds
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Emulation of cortical processing
(MRASTA)

-

16 x 14 bands = 448 projections

32 2-D projections
with variable resolutions

frequency

32 2-D projections
with variable resolutions

(critical-band spectral analysis)
v

peripheral processing

time

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

TN

111


https://ocw.mit.edu/help/faq-fair-use/

Multi-resolution RASTA (MRASTA)

(Interspeech 05)

Spectro-temporal basis formed by outer products of

time frequency example
S e
3 critical |— Z L -
bands 3
central frequency =
band derivative

500 0 500
time [ms]

-500 0 500

Bank of 2-D (time-frequency) filters
(band-pass in time, high-pass in frequency)

1.RASTA-like: alleviates stationary components
2.multi-resolution in time

© IDIAP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hermansky, Hynek, and Petr Fousek. Multi-resolution RASTA filtering for
TANDEM-based ASR. No. EPFL-REPORT-83199. IDIAP, 2005.

modulation frequency [Hz]
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Some “novel” (in 1998) elements of
TRAPS

Rather long temporal context of the signal as input
Hierarchical structured neural net (“deep neural net”)

Independent processing in frequency-localized parallel
neural net estimators

— most of these elements typically found in current
state-of-the-art speech recognition systems

However, parts of TRAPS DNN trained individually, while
today’s DNNs are optimized jointly
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Tonality [Bark]

Phoneme index

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

time
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— frequency

Serial hierarchical estimation
(Pinto et al, Interspeech 2008)

90 ms

4 50 60 70
time (x10 ms)

Also, Grezl et al,
Interspeech 2009,
(universal context nets)

10 2 30 4 50 60 70
time (x10 ms)

© Interspeech. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Results
(CTS):
Phoneme
recognition
accuracy
55.3%

63.6%
accuracy
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Picture of Columbo removed due to copyright restrictions. Please see the video.

Processing of frequency-localized temporal
trajectories of spectral energies (rather than short-
time spectral envelopes) appears to offer a number
of advantages
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Away from Short-Term Spectrum

back to human
hearing

time

— spectrum
of the shor

segment

Y
frequency

time

s(f,ty) W

O 0O O O O O

time

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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How to Get Estimates of Temporal Evolution of Spectral Energy ?
- with M. Athineos, D. Ellis (Columbia Univ), and P. Fousek (CTU Prague)

D amm

time
200-1000ms
-~ datax
il | ‘ 1-3 Bark all-pole model of part of I I 1-3 Bark
EEEIEs ¥ e
001000 ms 200-1000 ms

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Frequency Domain Linear Prediction (FDLP)

FDLP

* means for all-pole estimation of Hilbert envelopes (instantaneous spectral energies)
in individual frequency channels

’% preprocessing —s
speech signal " __

A

cosine

to

transfrorm

’—%

autoregressive
model

N
—

A

-
o

time

FDLP
estimate
of Hilbert
envelope

frequency

autoregressive
model —> PLP sp\fctrum

L

frequency

— time

frequency

— time

© SAPA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Athineos, Marios, Hynek Hermansky, and Daniel PW Ellis. "PLP $~ 2%:
Autoregressive modeling of auditory-like 2-D spectro-temporal patterns." In
Workshop on Statistical and Perceptual Audio Processing (SAPA), no. EPFL-CONF-
83126. 2004. 15
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Autoregressive model of Hilbert envelope of the signal

(a)

5000
[o4]
=]
=
OO = o
E
<C
=0 100 200 300 & 400 500 600 700
@ @ S 4000
=
g 2000
<C
% 100 200 300 » 400 500 600 700
C
2
OO =
=
£ o
£
<T
2 100 200 300 400 500 600 700
Time (ms)

signal

AM component
(temporal envelope)

FM component
(carrier)

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Uses channel vocoder
(similar to the original
H. Dudley design)

speech —

sender

sub-band FDLP
sub-band FDLP

sub-band FDLP

white noise source -

channel

P
ey 2

>

R

R

L

receiver

reconstructed

)
'S
2
"M E [ speech
a
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Varying communication channels
(convolution with a short impulse response of a channel)

Convolution turns into addition in log spectral domain

Full model

illl

Amplitude (dB)
s
=
T

20 LN W/ |==Clean Spesch

===Telephone Speech
0 | | | | | | | | |

'Model without its gain component
(b)

' Ignoring FDPLP model gain
g N makes the representation
§ invariant to linear distortions
g —— . introduced by the communication
20 « = Telephone Speech - channel.

(=1

100 200 300 400 500 600 700 800 900 1000

Time (ms)
Courtesy of The Acoustical Society of America. Used with permission.
Source: Ganapathy, Sriram, Samuel Thomas, and Hynek Hermansky.
"Temporal envelope compensation for robust phoneme recognition using
modulation spectrum." The Journal of the Acoustical Society of America
128, no. 6 (2010): 3769-3780.
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Reverberant speech

(convolution with a long impulse response of the room)
Gain of the AR model included

Recognition accuracy [%]
-clean and reverberated (8
different room responses)
Aurora digits

PLP FDLP
Figure removed due to copyright restrictions. Please see the video. Clean 9968 99 18
Source: Thomas, Samuel, Sriram Ganapathy, and Hynek Hermansky.

"Recognition of reverberant speech using frequency domain linear reveb 8012 8948

prediction." IEEE Signal Processing Letters 15 (2008): 681-684.

Improvements on real
reverberations similar
(Thomas, Ganapathy,
Hermansky, IEEE Signal
Processing Letters, Dec 2008)
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Known noise with unknown effects



Dealing with unknown effects of
known noise

———————————————————————

training data with all
noises that we do not

______________________ —

~ —

-~ know howto handle -

speech signal — features —> machine — wanted information
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phoneme error rates noisy TIMIT

train / test
clean

car

crowd
ship 1
ship 2

multi-style

clean
20.7

23.0

car
34.2
22.7

24.9

crowd
59.2

36.0

36.8

shipl  ship2
65.7 64.9
35.6

35.2
39.0 39.7

Mallidi et al in preparation
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clean
car

speech crowd pick the best stream

shipl

ship2

Vol
A

pick the best stream based on input
* recognize type of noise

pick “the best” output
 what does “the best” mean ?

Do it fast (based on short segment of test data)
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“good” posteriogram — derived from speech data similar to its training
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“bad” posteriogram — derived from corrupted speech data
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The “best” probability estimates?

ldeally the ones which yield the lowest error

— do not know the correct answer so do not know
the error

1. Estimates which yield “clean” posteriograms

2. “Similar” to ones derived on training data of the
estimator



How “clean” is a posteriogram ?
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Ai —time delay
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AR |
M{Ai) clean data

noisy data
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How “similar” is the estimator performance on
its training data and in the test?

DNN autoencoder trained on output of the estimator when

applied to its training data

Non-linear hidden

layers
. . M BN
Linear input S Linear output
s 1 ~
layer layer
\‘ s

N
A\
E —

= (O~
output reconstructed
from output from
probability probability

estimator estimator

0.30

0.25}

0.20f

0.15¢

0.10

0.05f

0.0B.

train —

matched_test — |
mismatch_test —

0.2 0.3 0.4
Mean Square Error for AutoEncoder

0.5
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picking up good streams

phoneme error rates noisy TIMIT

train / test clean car crowd shipl ship2
multi-style 23.0 24.9 36.8 39.0 39.7
matched 20.7 22.7 36.0 35.6 35.2
oracle 17.7 19.9 31.8 31.1 314
multi-stream with ° 20.9 24.3 35.0 34.8 37.2

performance monitoring

Mallidi et al in preparation
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Previously unseen noise
extrapolate from known noise training ?

phoneme error rates noisy TIMIT

train / test clean
clean 20.7

car

crowd

ship 1

ship 2

multi-style 23.0

oracle 18.4

multi-stream 20.9

car

22.7

24.9
20.5

24.3

crowd

36.0

36.8
34.7

35.0

shipl

35.6

39.0
34.5

34.8

ship2

35.2
39.7
34.8

37.2

unseen noise
f16 fighter

62.9
62.7
41.4
40.8
44.8
36.3
29.1

32.5

Mallidi et al in preparation

132



Divide et Impera

90dB

70dB¢

50dB+

30dB+

10dB

Power Spectral

025 05 10 20 40 8.0
Frequency (Hz)

* unknown noise of arbitrary shape can be approximated by white
noise of appropriate levels in individual frequency sub-bands.
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13-15 Bark DNN
16-18 Bark DNN
19-21 Bark DNN

1-3 Bark DNN —>
4-6 Bark DNN —>
7-9 Bark DNN —>
_ final
speech —» 10-12 Bark DNN —> fusion DNN —>  posterior
. estimates
—=
—

all neural nets (DNNs) trained on clean, 20 dB, 10 dB, 5 dB SNR white noise
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Word error rates (Aurora 4)

test test
>30dB SNR 10 dB SNR

training 3.10 % 15.65 %
> 30 dB SNR

training 5.06 % 4.35 %
10 dB SNR

training 9.04 % 4.73 %
5 dB SNR

multistyle training 4.28 % 5.17 %

>30, 15, 10,5 dB

sub-band 2.99 % 3.23 %
multistream

test
5dB SNR

36.60 %

14.70 %

7.73 %

11.86 %

10.18 %

unseen test
noise (car)

13.62 %

7.47 %

7.86 %

8.11 %

4.30 %
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Unexpected noise



Adaptation

* Modify classifier during its operation to
better deal with new previously unseen
conditions

— Assemble new classifier on-line from reliable
parts of the old one to improve performance on
new data?

— Assumptions

* some parts of the old classifier remain reliable
* measure of classifier performance is available

137



Multi-band processing

Subdivide speech spectrum into independent processing
streams for further processing

15t frequency range —>
® —>
o — performance
monitor final
speech = ° _> - osterior
s chooses the p
. .
best stream estimates
o - combination
—

Nt frequency range

5 frequency bands - 31 ways to combine them
— 31 processing streams, each covering different frequency ranges of the full spectrum

>

8 - - INN BN BN BN BN EE - - -

O - - - - - - - - - - .

S - - NN BN BN BN e . - - . - é noise

O == = - — - - - -

&) - . - - - - - - - -
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Multi-band processing with performance monitoring
Variani et al, Interspeech 2013

e All processing streams trained on clean speech

—o0—| Subband 1 ANN
2 Peﬁormance
x Monitor
- o —6_7 Subband 2|—{ ANN |-
speech - E — AN'N [ oo
o —t 5 [ »| Fusion selecting Viterbi | sedauence
= form 31 : N best Average decoder|
B : processing streams
A streams
—o——{ Subband 5 [—{ ANN
o0 |

Phoneme recognition error rates

environment conventional oracle

clean 31 % 28 % 25 %
(matched training and test)
TIMIT with car noise at 0 dB SNR 54 % 38 % 35 %

(training on clean)
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human auditory processing

EXTRACTED INFORMATION linguistic code (~ 50 b/s)
auditory cortex
100 M | number 10 Hz
of
neurons
perceptual and cognitive
processes
100K 1 kHz

spectral analysis

(cochlea)
SPEECH SIGNAL (> 50 kb/s)

SPEECH SIGNAL

many ways of describing the information on higher levels of perception !
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Multi-stream Processing

Stream formation

signal

different modalities

different

probability

estimates

differently trained probability
estimators

different aspects of the signal

different strenghts of priors

—>  fusion —> decision

Fusion

select “the best” probability estimates
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Conclusions

* Predictable effects of noise (e.g., linear
distortions) are relatively easy to deal with by
signal processing techniques that emulate
perception of modulations in signal

* Unpredictable effects of noise, typically handled
by multi-style training, could be better handled
by a bank of parallel “expert” processing streams
that emulate hypothetical parallel processing
channels in hearing
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