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signal processing

pattern classification

decoder

message

Signal processing, information 
theory, machine learning, …

Machine Recognition of Speech

© Apple. All rights reserved. This content is excluded from

our Creative Commons license. For more information, see
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Why to rock the boat? 
We have good thing going.

error
rates
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Repetition, fillers, hesitations, 
interruptions, unfinished and 
non-gramatical sentences, new 
words, dialects, emotions, …

Current DARPA and IARPA 
programs, research agenda of 
the JHU CoE HLT, industrial 
efforts (Google, Microsoft, IBM, 
Amazon,…)

Engineering and Life Sciences together !

Signal processing, 
information theory, 
machine learning, …

neural information processing, 
psychophysics, physiology, cognitive 
science, phonetics and linguistics, ...&

© Source Unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

© ASUS. All rights reserved. This content
is excluded from our Creative Commons
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1-2-3-6-7-49

first child
my mother’s 2nd marriage
my father’s 3rd marriage
was born of 6th of July

6 x 7 = 49

…  or at least engineering inspired by life sciences
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object 

perceived signal 

What is the message (is there a 
danger or opportunity ?

How to survive in 
this hostile 
world?

Auditory perception

© Source Unknown. All rights reserved.This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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“Eat vegetables, they 
are good for you”

How to survive in this world?

“Eat vegetables, they 
are good for you”

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

© PBS. All rights reserved. This content is excluded from

our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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Why machine recognition of speech?

Why did I climbed Mt. Everest?
Because it is there !

-Sir Edmund Hilary

Spoken language is one of the most amazing 
accomplishments of human race.

access to information

• voice interactions with machines
• extracting information from speech data !

Job security - it will not be fully solved within your lifetime 

Addressing generic problems with human-like information processing (vision, e.t.c.) 

© Sir Edmund Hillary & John Cleare with
Transworld Publishers. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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Speech

• Produced to be perceived
– We speak in order to be heard in order to be understood

Roman Jakobson

• Evolved over millennia to reflect properties of 
human hearing 
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breathing

eating

eating

protect
lungs from 
food

breathing

stiffen
the body

Organs of speech production

Life sustaining functions:
• eating
• breathing
• (and speaking)

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

10

https://ocw.mit.edu/help/faq-fair-use/


“Eat vegetables, they 
are good for you”

How to survive in this world?

What is the message?

“Eat vegetables, they 
are good for you”

cognitive aspects 
• common code (language),  context, prior 

experience,  …
reliable signal carrying the message

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

© PBS. All rights reserved. This content is excluded from
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Information in speech signal

C = W log2 [(S+N)/N)], 

W-signal bandwidth, 

S-power of signal, N-power of noise 

W – about 8 000 Hz
(S+N)/N  - about 103  

log2 1000 – about 10

C  about 80 kb/s  

standard PCM coding 
8 kHz sampling, 11 bit 
accuracy = 88 kb/s

41 phonemes in English 
H=log241 = 5.4 bit/phoneme
about 15 phonemes/s 
15 x 5.4 = 80 bps

considering relative frequencies of phonemes and phonotactic rules, the 
information in each phoneme decreases to about 1.5 bit/phoneme 

15-25 bps ! (of course no other info but the phoneme sequences)
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150,000 words – about 18 bits, 
300 words/min – 90 bits/s
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information
message

environmental noise 
who is speaking

language
health

mood
emotions social status

message

signal = message (wanted information)
noise = everything else (unwanted information) 

Get signal which carries desired information and ignores noise

The problem is NOT how to use all information but 
how to quickly IGNORE most of the information
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leaves 
birds

water running

telephone
ringing

baby
dog

car noise 

piano

motorcycle

chain saw

clock

rock band
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frequency [Hz] Selectivity of perception

• different frequency 
spans

• different sound 
intensities

speech
• different spectral and 

temporal dynamics
• different locations in 

physical space
e.t.c.

• selective attention 
(Mesgarani, Chang,..)

• e.t.c.

other
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Human Speech Communication

message

linguistic code (~ 50 b/s)

motor control

speech production

SPEECH SIGNAL (> 50 kb/s)
speech perception

cognitive processes

linguistic code (~ 50 b/s)

message

15



Producing speech
We speak in order to be heard in order to be understood

Roman Jakobson

© PBS. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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speech 

H. Dudley 'The carrier nature of speech ', Bell 
System Technical Journal, vol. 19 (1940)

messagecarrier

Inaudible message in slow motions of 
vocal tract is made audible by 
modulating the audible carrier

-Dudley 1940
© Wiley. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
Source: Dudley, Homer. "The carrier nature of speech."
Bell System Technical Journal 19, no. 4 (1940): 495-515.
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Producing speech

Johann Wolfgang Ritter von Kempelen de Pázmánd

This image of Wheatstone's construction of von Kempelen's speaking machine is in the public domain.
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Mechanical Turk
Johann Wolfgang Ritter von Kempelen de Pázmánd

This image of the automaton chess player of von Kempelen is in the public domain.
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Speech production

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Dudley, Riesz, and Watkins, "A synthetic speaker," Journal of the Franklin
Institute. 227, 739 (1939).
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VODER
(Homer Dudley 1939)

21

© Wiley. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Dudley, Homer. "The carrier nature of speech." Bell System Technical Journal
19, no. 4 (1940): 495-515.

https://ocw.mit.edu/help/faq-fair-use/


V(x) = Min

GlottisLips

V(x) = Max

F4

F3

F2

F1

3F

2F

1F

• Constraining the tube af the point of its 
maximum velocity of the mode is the most 
efficient way to lower the mode frequency

• Constraining it at the point of its maximum 
pressure  lower the mode frequency

Velocity 

Pressure 

l

c
iFi

4
)12( 

i = 1, 2, 3, 4, 5, ...
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glottislips

F1

F2

F3

F4

constriction 
(TONGUE?)

distance of constriction from lips (length of front cavity)

0           2            4            6            8          10          12          14          16

front cavity resonance
back cavity resonance
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1.5 6.0 1.5 6.0

length of the front cavity of the synthetic vocal tracts [cm]

Overall tract length 24 cm Overall tract length 14 cm

To
n

al
it

y 
[B

ar
k]

resonance frequencies of synthetic vocal tracts (formants)

first resonance of the front cavities of synthetic vocal tracts

adopted from Hermansky and Broad ICASSP 1990

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek, and D. J. Broad. "The effective second formant F2'

and the vocal tract front-cavity." In Acoustics, Speech, and Signal Processing,

1989. ICASSP-89.,1989 International Conference on, pp. 480-483. IEEE, 1989.
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Hearing 

We speak in order to be heard in order to be 
understood

Roman Jakobson

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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signal

BP1
BP2

BPn

BRAIN

bank of cochlear band-pass filters

Place theory of peripheral auditory processing

sound level [dB]
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characteristic frequency

ba
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w
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firing rate depends on sound intensity
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Figure of auditory processing from inner hair cells to auditory cortex
removed due to copyright restrictions. Please see the video.
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Brain wetware

speed
of

firing

periphery

cortex

1 kHz

10 Hz

number 
of

neurons

100 M

100K
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Figure of auditory processing from auditory cortex to hair cells
removed due to copyright restrictions. Please see the video.
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Figure of auditory processing from inner hair cells to auditory cortex
removed due to copyright restrictions. Please see the video.
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time
© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Auditory cortical spectro-temporal receptive fields

Courtesy of S. Shamma UMD lab

Many different 
STRFs

Sachs et al 1988

Obtained through a kind of 
“spike triggered averaging”
(dynamic ripples as inputs)

Figure removed due to copyright restrictions. Please see the video.

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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acoustic pressure 20 mPascal at 1 kHz is 0 dB spl

• free field measurement (mike in place of the ear)
• one ear
• time longer than 200 ms

highly frequency-dependent

Threshold of hearing
can you hear it?
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when signals are applied in in both ears, threshold for each is QB = QM / 2 
(signals integrate)

when two tones in one ear, the threshold QD = QS / 2 , 
as long as the signals are “close” in frequency 

(within “critical band”)

QS / 2 

f < critical 

left ear

right ear

< 200 ms

TIME

QM / 2

QM / 2

the tones do not have to occur simultaneously as long as they are  within 200 ms 
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threshpldth
threshold

target

masker

masked threshold

Simultaneous masking
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tone at f

threshold of

perception 

of the tone

noise bandwidth

what happens outside 
the critical band 
does not affect 
decoding of the 
sound in the critical 
band

band-pass filtered

noise centered at f

Simultaneous Masking (Fletcher 1940) 

critical 

bandwidth
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“critical bandwidth” again
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QS / 2 

f < 
critical 

remember ?
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t0

t0 to+ t to+ 200 ms

to+ t to+ 200 ms

– what happens outside the critical interval, does not affect detection 
of signal within the critical interval

Masking in Time remember ?
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Loudness
how much louder is one sound comparing to another?

loudness = intensity 0.33

intensity ≈ signal 2 [w/m2] loudness [Sones]

for stimuli longer than 200 ms

39



Equal loudness curves

Figure of equal loudness curves removed due to copyright restrictions. Please see the video.
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depth of modulation

change the depth of 
modulation and modulation 
frequency

is the signal modulated 
or not?

modulation frequency-1

© American Physical Society. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Riesz, R. R. "Differential intensity sensitivity of the ear for pure tones." Physical
Review 31, no. 5 (1928): 867.
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Modulation spectrum of speech

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Rhythm

Perception of rhythm: tap on a Morse-code key to the rhythm of the sound

Speech sentence

In average 4 taps per s

60 pieces of music

histogram of tapping frequencies

modulation
frequency of 
music pieces

sensitivity of 
hearing to 
modulations

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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time

time
fr

eq
u

e
n

cy

Where is the information ?
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speech 

H. Dudley 'The carrier nature of speech ', Bell 
System Technical Journal, vol. 19 (1940)

messagecarrier

Inaudible message in slow motions of 
vocal tract is made audible by 
modulating the audible carrier

-Dudley 1940

© Wiley. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
Source: Dudley, Homer. "The carrier nature of speech."
Bell System Technical Journal 19, no. 4 (1940): 495-515.
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VOCODER
(H. Dudley, U.S. patent US2194298 A 1939)

• Predictability (production)

– speech waveform changes 
“slowly” (inertia of air mass 
in vocal tract cavities) 

– spectral envelope changes 
slowly

• 20 Hz low-pass

– voiced speech is periodic

• pulse generator for 
excitation

• Hearing properties (perception)

– spectral resolution of hearing 

• wider band-pass filters 
at higher frequencies

© Homer Dudley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Figure removed due to copyright restrictions. Please see the video.
Source: Dudley, Homer, and Otto O. Gruenz Jr. "Visible speech translators with external
phosphors." The Journal of the Acoustical Society of America 18, no. 1 (1946): 62-73.
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SPECTROGRAM
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time

bank of 
bandpass

filters

time

spectrogram through band-pass filtering

fr
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time

fourier
transform
of short

segments of 
signaltime

spectrogram through short-time fourier transform
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information
message

environment

who is speaking
language
health

mood
emotions social status

code

message

Machine recognition of speech:
Transcribe the code which carries the message
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Speech

• Produced to be perceived
– We speak in order to be heard in order to be understood

Roman Jakobson

• Evolved over millennia to reflect properties of human 
hearing 

• Machine recognition of speech is a powerful way to 
support perceptual theory.
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Listening for the message in speech is not the only task that 
human auditory perception must accomplish. Knowing 
what to emulate and what not when recognizing the 
message in speech is important. We suggest that one way 
to proceed is to focus on successful and well accepted ASR 
solutions and compare their properties with what we know 
about the perception of signals, and of speech in particular. 
Often, the engineering solution turns out to be a reflection 
of particular characteristics of hearing.

Hynek Hermansky, Jordan R. Cohen, and Richard M. Stern. "Perceptual 
properties of current speech recognition technology." Proceedings of the 
IEEE 101.9 (2013): 1968-1985.

Better understanding of human perception through 
studying successful engineering solutions?

52



RECOGNITION

INFORMATION
low bit rateRECOGNIZER

SPEECH SIGNAL
high bit rate

KNOWLEDGE

who is speaking

language

health

mood

emotions

social status

message

e.g., text describing the 
message

noises

53



Knowledge

• From textbooks, teachers, intuitions, beliefs, …

– hardwired, so no need to learn it over and over again
but

– incomplete, irrelevant, can be wrong

• Directly from data

– relevant and unbiased
but

– large amounts of (transcribed) data may be required

– how to get architecture of a machine from data ?

54



Concept of the first “real”
automatic speech recognizer
(R.H. Galt 1951)

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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First “real” recognizer ever build 
(Davis, Biddulph, Balashek 1952) Automatic Speech Recognition of Spoken Digits, J. Acoust. Soc. Am. 24(6) pp.637 - 642

Courtesy of The Acoustical Society of America. Used with permission.
Source: Davis, K. H., R. Biddulph, and Stephen Balashek. "Automatic recognition of spoken
digits." The Journal of the Acoustical Society of America 24, no. 6 (1952): 637-642.
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training data containing 
ALL

sources of anticipated
harmful variability (noises)

speech message

single flat 
deep

neural net

speech recognition in 21st century?

© Source Unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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needs to 
understand 
speech 

cochlear nucleus

superior olivary
complex

lateral lemniscus

inferior colliculus

medial geniculate
body

brain

bank of parallel 
bandpass filters

brain

tuned to 25-50 kHz

needs to hear 
a hungry bat 
and to avoid it

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Source Unknown. All rights reserved. This content is
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training data containing 
ALL

sources of anticipated
harmful variability (noises)

speech 
message

highly structured
deep neural net

convolutive pre-processing,
recurrent structures,

long-short-term memory,
hierarchical subsampling

(connectionist temporal classification),
e.t.c.
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A reasonable compromise ?

Stuart Geman, Elie Bienenstock, and René Doursat. "Neural networks and the 
bias/variance dilemma." Neural computation 4.1 (1992): 1-58.

….. we suggest that the fundamental challenges in neural modeling 
are about representation rather than learning per se

speech signal features
(representation)

structured
machine

wanted information

noise with known effects

training data containing noise with 
unknown effects 

Features (representations)
• wanted information, which is lost in this stage, is lost for recognition forever
• unwanted information (noise), which is kept needs to be dealt with in later stages 

Features can be also designed using development data !
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sil works of art are based sil

derive features x ~10 ms
time

speech signal

estimate likelihoods p(x|mi), where mi are constituents  (samples of speech sounds) of M

w eh k s oh f aa r t aa r b ei s t

stochastic search

Ŵ = argmaxi p(x|Mi) P(Mi) language model and lexicon

carry-over from 20th century

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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coarticulation+ talker idiosyncrasies + environmental variability  =  a big 
mess

uh e l o w r dlo

hello world

uh e l o w r dlo

62
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Source: Hermansky, Hynek, Jordan R. Cohen, and Richard M. Stern. "Perceptual
properties of current speech recognition technology." Proceedings of the IEEE 101,
no. 9 (2013): 1968-1985; DOI: 10.1109/JPROC.2013.2252316.
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Two dominant sources of variability in speech

1. different people sound different, communication environment different,… 
(feature variability)

2. people say the same thing with different speeds (temporal variability)

x)))M(w(Pw i
i

|(maxarg Model parameters from training data

How to find unknown utterance w ?

Form of the model M ( wi ) ?

What is the data x ?))(()(|((maxarg 

ii
i

wMPwMxpw 

through (modified) Bayes rule

“Doubly stochastic” process (Hidden Markov Model)

Speech as a sequence of hidden states (speech sounds) - recover the sequence

1. never know for sure which data will be generated from a given state

2. never know for sure in which state we are in

63



where are the boys (or girls) ?

Want to know

f0=  195    125   140  120    185  130    145    190    245   155   130 Hz
hi hi hi hi hi hi hi hi hi hi hi

These parameters  

are typically learned 

from training data.
m

pm

f

pf

1-pm

1-pf

m
f

P(sound|gender)

f0

p1m  - probability of the first group being male group 

pn – probability of group having n subgroups

know
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works of art are based

derive features x ~10 ms
time

speech signal

estimate likelihoods p(x|mi), where mi are constituents  (samples of speech sounds) of M

A.Graves et al, Proc. ICML 2006

connectionist temporal classifier

w eh k s oh f aa r t aa r b ei s t

65
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derive features x ~10 ms
time

speech signal

Features (representations)

Features (representations)
• wanted information, which is lost in this stage, is lost for recognition forever
• unwanted information (noise), which is kept needs to be dealt with in later stages 

1. One of important tasks  of perception is to focus on relevant information 
(eliminating the irrelevant)

2. Feature extraction may benefit from emulations of relevant properties of 
hearing

3. Features can be also designed using development data (current trend)
• what emerges, is very likely relevant to speech perecption

66
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Most efficient (smallest) set of features are posterior probabilities of classes 

Artificial Neural Nets 

Classes – speech sounds:

• context independent phonemes 
• context dependent phonemes
• parts of context dependent phonemes

neural network
estimating

posteriors of
speech sounds 

signal
pre

processing

posteriogram
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a) Convert (divide by training priors) posterior probabilities 
to likelihoods for Viterbi search for the best word 
sequence 

Bourlard and Morgan, NIPS 1990

optional
additional 
processing
(PCA, LDA)

features for  HMM/GMM

output from
inside of

neural network
estimating

posteriors of
speech sounds 

b)   bottleneck (TANDEM) 

Fontaine, Ris and Boite, Eurospeech 1997  
Hermansky, Ellis and Sharma, ICASSP 2000
Grezl, Karafiat, Kontar, Cernocky, ICASSP 2007 
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information
message

environment

who is speaking
language
health

mood
emotions social status

code

message

signal = message (wanted information)
noise = everything else (unwanted information) 

69



Not all noises are created equal

• expected and effects are partially understood
e.g. linear distortions 

speech signal features machine wanted information

noise with known 
effects

training data containing noise with 
unknown effects 

• expected but effects are not well understood
e.g. various environmental noises

• unexpected 
e.g.  unexpected distortions - the real problem 
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Noise with known effects
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adult male

4 year old child

short-term spectrum

Harmful information about speaker
(speaker variability)

the same message

• different vocal tracts
• different speech signals
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Equal loudness curves

Figure of equal loudness curves removed due to copyright restrictions. Please see the video.
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Spectral resolution of hearing

spectral resolution of hearing decreases with frequency 
(critical bands of hearing, perception of pitch,…) 
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Figure removed due to copyright restrictions. Please see the video.
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© The Acoustical Society of America. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hermansky, Hynek. "Perceptual linear predictive (PLP) analysis of speech." The Journal
of the Acoustical Society of America 87, no. 4 (1990): 1738-1752.
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loudness = intensity 0.33

intensity ≈ signal 2 [w/m2] loudness [Sones]

intensity
(power spectrum)

loudness

|.|0.33
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Perceptual Linear Prediction
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com.

Used with permission.
Source: Hermansky, Hynek. "Should recognizers have ears?"

Speech communication 25, no. 1 (1998): 3-27.
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adult male

4 year old child

short-term spectrum 5th order PLP spectrum
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X-rays of Male and Child Vocal Tract  in 
Production of Vowels

• In production of 
vowels, the front part 
of the vocal tract 
appears to be less 
speaker dependent 
than its back part

– Hermansky and Broad 
ICASSP 1990
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Hermansky and Broad ICASSP 1990, Hermansky JASA 1990, 
Hermansky, Cohen, Stern, Proc. IEEE 2013

84

Figure removed due to copyright restrictions. Please see the video.
Source: Hermansky, Hynek, and D. J. Broad. "The effective second formant F2'

and the vocal tract front-cavity." In Acoustics, Speech, and Signal Processing,

1989. ICASSP-89.,1989 International Conference on, pp. 480-483. IEEE, 1989.



Listening for Shape of Front Cavity of Vocal Tract ?

message

encode

shape of
front cavity

perceptual second 
formant F2’

speech
perception

speaker-dependent
vocal tract

speech
spectrum

decode

Hermansky and Broad ICASSP 1990, Hermansky JASA 1990
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Data Do Not Lie

Prof. Frederick Jelinek: “Airplanes don’t flap their wings”. 

S. Lohr, New York Times, March 6, 2011 

“Airplanes do not flap wings but have wings nevertheless,….. 

Of course, we should try to incorporate the knowledge that we 
have of hearing, speech production, etc., into our systems,....but 
we need to estimate the parameter values from the data. There is 
no other way

F. Jelinek,  Five speculations (and a divertimento) on the themes of H. Bourlard, H. 
Hermansky, and N. Morgan, Speech Communication 18, 1996. 242–2
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Linear Discriminant Analysis (LDA)

LDA
Linear 
discriminants: 
eigenvectors of
S-1

WSB

SW - within-class 
covariance matrix
SB - between class 
covariance matrix

• Needs labeled data 
• Within-class distributions assumed Gaussian 

with equal s (take log of power spectrum)
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Linear discriminant analysis (LDA) on short term spectral vectors

time

fr
eq

ue
nc

y

/j/  /u/  /ar/   /j/   /o/    /j/     /o/ /j/
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LDA vectors from Fourier Spectrum
(OGI 3 hour stories hand-labeled database)

• Spectral resolution of LDA-
derived spectral basis is 
higher at low frequencies

Psychophysics: 
Critical bands of human 
hearing are broader at 
higher frequencies

Physiology:
Position of maximum of 
traveling wave on basilar 
membrane is proportional 
to logarithm of frequency

© ISCA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Hermansky, Hynek. "Data-guided processing of speech." In Workshop on
Spoken Language Processing. 2003.
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4 discriminants

(92 % of variance)

1 period / octave

• resolution 

decreases with 

frequency

• resolution 

coarser than 

critical bands © ISCA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Hermansky, Hynek. "Data-guided processing of speech." In Workshop on
Spoken Language Processing. 2003.
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30 hours of Resource Management and Switchboard labeled speech data (courtesy of 
SRI) 
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Eigenvalues of the discriminant matrix

first 16 eigenvectors

0

1.0

100
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Spectral sensitivity of projections

• Perturbation analysis

– project Gaussian shape on 
the first 16 spectral basis 
and evaluate the effect of 
the shift in m by 30 Hz as 
the function of m

log spectral
Euclidean 
distance
due to the 
shift in m

m

Shift in m constant on 
the Hz scale

Decreasing spectral sensitivity with increasing frequency
- consistent with spectral resolution of hearing

μ

dm30 Hz

first 16
LDA basis ?
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Sensitivity to Spectral Change
(Malayath 1999)

Cosine basis               LDA-derived basis  Critical-band filterbank
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Linear distortions (filtering)

filter 

fr
eq

u
en

cy

fr
eq

u
en

cy

timetime

original speech filtered speech
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Effect of fixed linear distortions

• Convolution of speech with impulse response 
of the distorting filter

• Results in different additive constant  at 
different frequencies in logarithmic spectral 
domain

)(log)(log)}]()({log[

)()()(

 EStetsFT

tetstx




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Spectral analysis in ear

signal

spectral 
energies in 

critical bands

low frequencies

high frequencies

Ear is frequency selective in order to yield frequency-
localized temporal patterns for processing by higher 
processing levels in hearing.

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Exploiting spectral selectivity in 
engineering

1. Separate speech into different frequency 
channels

1. Do independent processing in each frequency 
channel
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RASTA processing

Hermansky and Morgan 1994

inspired by Marr 1974
“lightness” = luminance with slowly 
varying components removed

time

ωi

logP(ωi,t)

DC(ωi))

time

ωi

logP’(ωi,t)

0

Figure removed due to copyright restrictions. Please see the video.

Source: Hermansky, Hynek, and Nelson Morgan."RASTA processing

of speech." IEEE transactions on speech and audio processing 2, no.

4 (1994): 578-589.

© IEEE. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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Environmental mismatch in training and in test 

matched mismatched

conventional 2.8 % error 60.7% error

RASTA 2.2 % error 2.9 % error

spectrogram from RASTA

fr
eq

u
en

cy

time

spectrogram 

original speech filtered speech
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time
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y

/j/  /u/  /ar/   /j/   /o/    /j/     /o/

/j/   

labeled data – labeled temporal vector space – LDA FIR FILTER IMPULE RESPONSES

Linear Discriminant Analysis on Temporal Vectors 
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impulse responses

-500                           0                          500 -500                          0                          500

-500                           0                          500 -500                        0                         500
time [ms] time [ms]

77% 10%

7% 2%

modulation frequency [Hz] modulation frequency [Hz]

frequency responses

van Vuuren and Hermansky 1997,  
Valente and Hermansky 2006 

similar filters at all 
carrier  frequencies
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DNN with convolutions in time

~ 500 ms

with Peddinti, Pesan, Vesely and Burget

© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Pešan, Burget, Hermansky, Vesely Interspeech 2015

filter impulse responses

filter frequency responses

~ 200 ms

Courtesy of Interspeech. Used with permission.

Source: Pešán, Jan, Lukáš Burget, Hynek Hermanský1, and Karel Veselý. "DNN

derived filters for processing of modulation spectrum of speech." In Sixteenth

Annual Conference of the International Speech Communication Association. 2015.
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Auditory cortical receptive fields

Temporal principal components from 
about 2000 cortical receptive fields

Mahajan, Mesgarani, Hermansky, 
INTERSPEECH 2014 

Thomas  et al INTERSPEECH 2010

ignoring phase shifts
(principal components of magnitudes of 
temporal components of STRFs)

Mahajan and Hermansky, in 
preparation

© Interspeech. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
Source: Thomas, Samuel, Sriram Ganapathy, and Hynek
Hermansky. "Cross-lingual and multi-stream posterior
features for low resource LVCSR systems." In Interspeech,
pp. 877-880. 2010.

Courtesy of Interspeech. Used with permission.
Source: Mahajan, Nagaraj, Nima Mesgarani,
and Hynek Hermansky. "Principal components
of auditory spectro-temporal receptive fields."
In INTERSPEECH, pp. 1983-1987. 2014.
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Slow Modulations and Speech Communication
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0

45 %

range of modulation frequencies [Hz]

Human and machine recognition experiments

(with Kanedera,  Arai, and Pavel 1999 )

© Speech Communication. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Slow Modulations and Speech Communication

Inaudible message in slow motions of 
vocal tract is made audible by 
modulating the audible carrier

-Dudley 1940

Information about a message is in 
slow changes of speech signal in 
individual frequency bands

Flow chart of sound filtering removed due to 

copyright restrictions. Please see the video.
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• frequency discrimination of short stimuli improves up to 
about 200 ms

• loudness of equal-energy stimuli grows up to about 200 ms
• minimum detectable silent interval indicates time constant 

of about 200 ms
• effect of forward masking lasts about 200 ms
• sub-threshold integration of speech sounds within 200 ms
• e.t.c.

syllable-length buffer of human hearing ?

Slow modulations – long time spans !
(5 Hz  - > 200 ms)
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Where are speech sounds (phonemes) ?

about 7 ms

time
about 200 ms

> 200 ms

classifier
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Classifying TempoRAl Patterns of Spectral Energies

~ 100 ms
conventional

TRAPS
Hermansky and Sharma, ICSLP 1998

neural net
probability estimator

time

fr
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u
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cy

vector of posterior probabilities
of speech sounds
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cy

~ 1000 ms

time

merging
neural net
probability 
estimator

processing

processing

processing

neural net
probability estimator

neural net
probability estimator

neural net
probability estimator

vector of 
posterior 

probabilities
of speech 
sounds

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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16 x 14 bands = 448 projections

Emulation of cortical processing
(MRASTA)

data1

t0

32 2-D projections
with variable resolutions

time
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32 2-D projections
with variable resolutions
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© ICSLP. All rights reserved. This content is excluded from our Creative Commons
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Multi-resolution RASTA (MRASTA)
(Interspeech 05)

0-500 500
time [ms]

Spectro-temporal basis formed by outer products of

time

central 

band
frequency

derivative

3 critical

bands

frequency

time [ms]

fr
eq

ue
nc

y

example

-500        0         500

Bank of 2-D (time-frequency) filters

(band-pass in time, high-pass in frequency)

1.RASTA-like: alleviates stationary components

2.multi-resolution in time

© IDIAP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Hermansky, Hynek, and Petr Fousek. Multi-resolution RASTA filtering for
TANDEM-based ASR. No. EPFL-REPORT-83199. IDIAP, 2005.
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Some “novel” (in 1998) elements of 
TRAPS

• Rather long temporal context of the signal as input

• Hierarchical structured neural net (“deep neural net”)

• Independent processing in frequency-localized parallel 
neural net estimators

– most of these elements typically found in current 
state-of-the-art speech recognition systems

However, parts of TRAPS DNN trained individually, while 
today’s DNNs are optimized jointly
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Serial hierarchical estimation
(Pinto et al, Interspeech 2008)

time

fr
e

q
u
e
n

c
y Results 

(CTS) :

Phoneme

recognition

accuracy 

55.3%

63.6%

accuracy

data ANN1

90 ms

ANN2

230 ms

Also, Grezl et al, 
Interspeech 2009, 
(universal context nets) 

© Interspeech. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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• Processing of frequency-localized  temporal 
trajectories of spectral energies (rather than short-
time spectral envelopes) appears to offer a number 
of advantages

Picture of Columbo removed due to copyright restrictions. Please see the video.
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Away from Short-Term Spectrum

time

T

t0

fourier

transform

s(f,t0)

spectrum

of the  short

segment

time

fr
eq

u
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cy time

time

fr
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back  to human 
hearing

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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How to Get Estimates of Temporal Evolution of Spectral Energy ?
- with M. Athineos, D. Ellis (Columbia Univ), and P. Fousek (CTU Prague)

data x

time

10-20 ms

200-1000 ms

1-3 Bark

time
200-1000 ms

200-1000 ms

1-3 Barkall-pole model of  part of

time-frequency plane

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

118

https://ocw.mit.edu/help/faq-fair-use/


Frequency Domain Linear Prediction (FDLP)

time

fr
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ue
nc

y 

speech signal

time

preprocessing autoregressive 
model PLP spectrum

t0

t0

time

fr
eq

ue
nc

y 

cosine
transfrorm

frequency

autoregressive
model

FDLP 
estimate
of Hilbert
envelope 

f0

f0

FDLP
• means for all-pole estimation of Hilbert envelopes (instantaneous spectral energies) 

in  individual frequency channels

© SAPA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Athineos, Marios, Hynek Hermansky, and Daniel PW Ellis. "PLP $^ 2$:
Autoregressive modeling of auditory-like 2-D spectro-temporal patterns." In
Workshop on Statistical and Perceptual Audio Processing (SAPA), no. EPFL-CONF-
83126. 2004.
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signal

AM component 
(temporal envelope)

FM component 
(carrier)

Autoregressive model of Hilbert envelope of the signal

Uses channel vocoder
(similar to the original 
H. Dudley design) speech

sy
n

th
es

is

reconstructed

speech

sender channel receiver

white noise source

sub-band FDLP

sub-band FDLP

sub-band FDLP

© ICSLP. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Varying communication channels
(convolution with a short impulse response of a channel)

Full model

Model without its gain component

Convolution turns into addition in log spectral domain

Ignoring FDPLP model gain 
makes the representation 
invariant to linear distortions 
introduced by the communication 
channel. 

Courtesy of The Acoustical Society of America. Used with permission.
Source: Ganapathy, Sriram, Samuel Thomas, and Hynek Hermansky.
"Temporal envelope compensation for robust phoneme recognition using
modulation spectrum." The Journal of the Acoustical Society of America
128, no. 6 (2010): 3769-3780.
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Reverberant speech
(convolution with a long impulse response of the room)

Recognition accuracy [%]
-clean and reverberated (8 
different room responses) 
Aurora digits

PLP FDLP
clean 99.68 99.18
reveb 80.12 89.48

Improvements on real 
reverberations similar 
(Thomas, Ganapathy, 
Hermansky, IEEE Signal 
Processing Letters, Dec 2008)

Gain of the AR model included

Figure removed due to copyright restrictions. Please see the video.
Source: Thomas, Samuel, Sriram Ganapathy, and Hynek Hermansky.
"Recognition of reverberant speech using frequency domain linear
prediction." IEEE Signal Processing Letters 15 (2008): 681-684.
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Known noise with unknown effects
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Dealing with unknown effects of 
known noise

speech signal features machine wanted information

training data with all 
noises that we do not 
know  how to handle
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phoneme error rates noisy TIMIT

train / test clean car crowd ship1 ship2
clean 20.7 34.2 59.2 65.7 64.9
car 23.8 22.7 58.1 65.2 64.6
crowd 30.8 33.1 36.0 38.1 44.9
ship 1 35.4 41.3 53.7 35.6 44.9
ship 2 37.0 45.4 58.3 45.0 35.2

multi-style 23.0 24.9 36.8 39.0 39.7

Mallidi et al in preparation
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speech

clean

car

crowd

ship1

ship2

pick the best stream

pick the best stream based on input
• recognize type of noise

pick “the best” output
• what does “the best” mean ?

Do it fast (based on short segment of test data)
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“good” posteriogram – derived from speech data similar to its training 
data

“bad” posteriogram – derived from corrupted speech data
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The “best” probability estimates?

Ideally the ones which yield the lowest error

– do not know the correct answer so do not know 
the error

1. Estimates which yield “clean” posteriograms

2. “Similar” to ones derived on training data of the 
estimator
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How “clean” is a posteriogram ?
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Δi – time delay
D(.) – symmetric Kl divergence

Δτ
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output 
from 

probability 
estimator

reconstructed 
output from 
probability 
estimator

DNN autoencoder trained on output of the estimator when 
applied to its training data

How “similar” is the estimator performance on 
its training data and in the test?
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picking up good streams

phoneme error rates noisy TIMIT

train / test clean car crowd ship1 ship2

multi-style 23.0 24.9 36.8 39.0 39.7
matched 20.7 22.7 36.0 35.6 35.2
oracle 17.7 19.9 31.8 31.1 31.4 

Mallidi et al in preparation

multi-stream with ` 20.9 24.3 35.0 34.8 37.2 
performance monitoring
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Previously unseen noise 

phoneme error rates noisy TIMIT

Mallidi et al in preparation

multi-stream 20.9 24.3 35.0 34.8 37.2 32.5

extrapolate from known noise training ?

train / test clean car crowd ship1 ship2 unseen noise
f16 fighter

clean 20.7 62.9
car 22.7 62.7
crowd 36.0 41.4
ship 1 35.6 40.8
ship 2 35.2 44.8
multi-style 23.0 24.9 36.8 39.0 39.7 36.3
oracle 18.4 20.5 34.7 34.5 34.8 29.1
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Divide et Impera

• unknown noise of arbitrary shape can be approximated by white 
noise of appropriate levels in individual frequency sub-bands.

90 dB
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fusion DNN

1-3 Bark DNN

4-6 Bark DNN

7-9 Bark DNN

10-12 Bark DNN

13-15 Bark DNN

speech
final

posterior
estimates

16-18 Bark DNN

19-21 Bark DNN

all neural nets (DNNs) trained on clean, 20 dB, 10 dB , 5 dB SNR white noise
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sub-band
multistream

2.99 % 3.23 % 10.18 % 4.30 %

Word error rates (Aurora 4)

test 
> 30 dB SNR

training 
> 30 dB SNR

training        
5 dB SNR

7.73 %9.04 %

training      
10 dB SNR

5.06 % 4.35 % 14.70 %

4.73 %

3.10 %

test 
5 dB SNR

test 
10 dB SNR

15.65 % 36.60 %

multistyle training 
>30, 15, 10 ,5 dB  

4.28 % 5.17 % 11.86 %  

unseen test
noise (car)

13.62 %

7.47 %

7.86 %

8.11 %
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Unexpected noise
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Adaptation

• Modify classifier during its operation to 
better deal with new previously unseen 
conditions

– Assemble new classifier on-line from reliable 
parts of the old one to improve performance on 
new data?

– Assumptions

• some parts of the old classifier remain reliable

• measure of classifier performance is available

137



Subdivide speech spectrum into independent processing 
streams for further processing

Multi-band processing

1st frequency range

speech
final

posterior
estimates

Ntht frequency range

performance
monitor 
chooses the 
best stream 
combination

5 frequency bands - 31 ways to combine them 
– 31 processing streams, each covering different frequency ranges of the full spectrum

fr
eq

u
e

n
cy

noise
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Multi-band processing with performance monitoring
Variani et al, Interspeech 2013

Subband 1

... ...

ANN 
Fusion
form 31 

processing 
streams

phone 
sequence

Subband 2

Subband 5

…
...

speech 
signal

Performance 
Monitor

selecting 
N best 

streams

Viterbi 
decoderAverage

ANN

ANN

ANN
...

...

Fi
lte

ra
nk

environment conventional PM oracle

clean

(matched training and test)

31 % 28 % 25 %

TIMIT with car noise  at 0 dB SNR

(training on clean)

54 % 38 % 35 %

Phoneme recognition error rates 

• All processing streams trained on clean speech
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number 
of 

neurons

100 M

100K

spectral analysis
(cochlea)

speed 
of 

firing 1 kHz

10 Hz

SPEECH SIGNAL  

EXTRACTED INFORMATION

human auditory processing

auditory cortex

linguistic code (~ 50 b/s)

perceptual and cognitive 
processes

SPEECH SIGNAL (> 50 kb/s)

many ways of describing the information on higher levels of perception !
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Multi-stream Processing

Fusion

• select “the best” probability estimates

Stream formation

• differently trained probability 
estimators

• different aspects of the signal

• different modalities

• different strenghts of priors

signal
fusion decision

different 
probability 
estimates
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Conclusions

• Predictable effects of noise (e.g., linear 
distortions) are relatively easy to deal with by 
signal processing techniques that emulate 
perception of modulations in signal

• Unpredictable effects of noise, typically handled 
by multi-style training, could be better handled 
by a bank of parallel “expert” processing streams 
that emulate hypothetical parallel processing 
channels in hearing
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