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Mushroom body endows organisms with a degree of 
free will or intelligent control over instinctive actions 

- Dujardin, 1850 

(Strausfeld et al., 1998)
 
© Source Unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Heisenberg, Martin. "Mushroom body memoir: From maps to models."
Nature Reviews Neuroscience 4, no. 4 (2003): 266-275. ©2003.
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Courtesy of Yoshi Aso. Used with permission.

9



Projection neurons

	
  
1-8 cells/type 

~ 50 types 

~ 200 cells

Yoshi Aso, Daisuke Hattori

Courtesy of Yoshi Aso. Used with permission.
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Kenyon cells	
  

70-600 cells/type 

~ 7 types 

~ 2000 cells

Yoshi Aso, Daisuke Hattori

Courtesy of Yoshi Aso. Used with permission.
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Yoshi Aso, Daisuke Hattori

Courtesy of Yoshi Aso. Used with permission.
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Antennal Lobe

Caron, Ruta, Abbott, Richard Axel, 2013

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Caron, Sophie JC, Vanessa Ruta, L. F. Abbott, and Richard Axel. "Random convergence of
olfactory inputs in the Drosophila mushroom body." Nature 497, no. 7447 (2013): 113-117. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Caron, Sophie JC, Vanessa Ruta, L. F. Abbott, and Richard Axel. "Random convergence of
olfactory inputs in the Drosophila mushroom body." Nature 497, no. 7447 (2013): 113-117. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Caron, Sophie JC, Vanessa Ruta, L. F. Abbott, and Richard Axel. "Random convergence of
olfactory inputs in the Drosophila mushroom body." Nature 497, no. 7447 (2013): 113-117. © 2013.
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Supplementary Figure 1. | Distribution of glomerular connections onto KCs.  
a, The glomerular connections in the data sorted according to their observed frequencies display a non-uniform 
distribution. We observe that the frequency of connections to a given glomerulus roughly correlates with the number 
and size of its PN boutons in the MB calyx. b-b’’’, The VA2 glomerulus represents 1.3% of the total number of 
connections. Photo-labeling the VA2 glomerulus in four different flies expressing SPA-GFP under the control of the 
pan-neuronal promoter synaptobrevinGAL4 reveals each time a single PN forming boutons that are similar in number, 
size and overall location in the MB calyx. c, The DA3 glomerulus is absent in the data set and photo-labeling this 
glomerulus reveals one PN forming a single bouton in the MB calyx. d, The VL1 glomerulus, also absent in the data 
set, is innervated by 2 PNs extending small calycal boutons. e, The DA2 glomerulus represents 0.4% of the total 
number of connections and is innervated by 5 PNs, each of which extends only a single bouton into the MB calyx. f, 
The VA7l glomerulus represents 0.7% of the total number of connections and is innervated by a single PN also 
extending small boutons. g, The DP1m glomerulus accounts for 3.0% of the total number of connections and its 
associated PN forms larger and more numerous boutons than the PNs of less frequently represented glomeruli. h, 
Similar observations are made with the DL1 glomerulus (1 PN) representing 4.4% of the total number of connections. 
i, The most frequent DA1 glomerulus (5.1% of the total number of connections) is innervated by 6 PNs forming large 
boutons in the MB calyx. j, Similarly, the DC3 glomerulus (also forming 5.1% of the total number of connections)  is 
innervated by 4 PNs also extending large boutons in the MB calyx. Scale bar = 10 mm. 

Murthy, Fiete, Laurent 2008 

Caron, Ruta, Abbott, Richard Axel 2013

Gruntman, Turner 2013

~7 connections per KC
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MB-Output neurons	
  

1-7 cells/type	
  

21 types 

34 cells

Yoshi Aso, Daisuke Hattori
Courtesy of Yoshi Aso. Used with permission.
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Mushroom Body Extrinsic Neurons

Registration of 13 Gal4 lines

Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A Iyer,  Teri-TB Ngo, 
Heather Dionne, LF Abbott, Richard Axel, Hiromu Tanimoto, Gerald M Rubin, 2014

Courtesy of eLife. Used with permission. 
Source: Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, 
Ghislain Belliart-Guérin, Pierre-Yves Plaçais et al. "Mushroom body output neurons encode
valence and guide memory-based action selection in Drosophila." Elife 3 (2014): e04580. 
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cholinergic glutamatergic GABAergic output neurons
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Dopaminergic neurons

Mushroom body lobe synaptic units

Neurons innervating α/β lobes

Output neurons

Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A Iyer,  Teri-TB Ngo, 
Heather Dionne, LF Abbott, Richard Axel, Hiromu Tanimoto, Gerald M Rubin, 2014

Courtesy of eLife. Used with permission. 
Source: Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, 
Ghislain Belliart-Guérin, Pierre-Yves Plaçais et al. "Mushroom body output neurons encode
valence and guide memory-based action selection in Drosophila." Elife 3 (2014): e04580. 
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cholinergic glutamatergic GABAergic output neurons

dopamine neurons
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Moshe Parnas, Andrew C. Lin, Wolf Huetteroth, Gero Miesenbock, 2013

intrinsic neurons of the MBs. Switching off the efferent synap-
ses of KCs during testing occluded the effects of learning: the
decision bias of trained flies now followed the same distance-
discrimination function as that of untrained flies (Figure 4B).
Both parental control strains showed wild-type (WT) perfor-
mance at the elevated temperature (Figure S4). Thus, prevent-
ing the retrieval of memory in trained animals re-exposed
their innate behavioral state. In contrast, blocking KC output
in untrained flies had no discernible behavioral consequence;
the distance-discrimination functions of untrained animals
with intact and blocked MB output overlapped precisely (Fig-
ure 4A). We conclude that flies use two parallel odor represen-
tations in a state-dependent manner: they rely on the LH alone
in the untrained state and engage the MB only after training.
Failures of untrained flies to discriminate behaviorally between
odors that are separated by small ePN distances, despite
strong and opposing preferences to each odor alone, must
reflect the coarse grain of odor representation in the LH and
a lack of incentive to draw on the fine discrimination system
of the MB.

Inhibition by GABAergic PNs Enhances Innate Odor
Discrimination
The enhancer trap line Mz699-GAL4 (Lai et al., 2008; Okada
et al., 2009) labels 39.3 ± 0.5 GABA-positive PNs (mean ± SD,
n = 4 hemispheres) located in a cluster at the ventral face of
the antennal lobes (Figures 5A and 5D; Movies S1 and S2).
Most of these GABAergic iPNs extend dendrites into multiple
glomeruli (Lai et al., 2008; Tanaka et al., 2012) and project their
axon via the mediolateral antennal lobe tract (mlALT, formerly
the medial antennocerebral tract or mACT) to the LH (Figures
5A and 5C; Movie S3) (Lai et al., 2008; Tanaka et al., 2012). In
contrast, the vast majority of the !90 ePNs marked by GH146-
GAL4 possess uniglomerular dendrites and project via the
medial antennal lobe tract (mALT, formerly the inner antenno-
cerebral tract or iACT) to both theMB and LH (Figure 5B) (Tanaka
et al., 2012).
Because iPN dendrites sample many glomerular channels,

odor-evoked iPN activity, like that of multiglomerular local neu-
rons (Olsen et al., 2010), might scale with overall excitation in
the olfactory system. To test this idea, we expressed GCaMP3
underMz699-GAL4 control and imaged the bundle of iPN axons
innervating the LH as a proxy for iPN output. As expected, the
time integral of odor-evoked fluorescence changes correlated
with two estimates of olfactory stimulus strength (Figures 5F,
5G, and S5A): the sum of spike rates across the 24 characterized
ORN classes (Figure S5A); and the number of active glomerular
channels, which was determined by thresholding ORN spike
rates at 30 Hz (Figure 5G; see Figure S5B for a justification of
threshold). The odor responses of iPNs were predicted more
accurately by the number of active glomerular channels than
by the summed spike rates in these channels (Figures 5G and
S5B). This result can be understood as a consequence of
short-term depression at ORN synapses (Kazama and Wilson,
2008), which clips excitation to iPNs when only a few ORN
classes are highly active but generates an effective drive when
many ORN types fire at moderate rates.
Interference with synaptic transmission from iPNs via the

expression of shits1 under Mz699-GAL4 control altered the
behavioral responses to odors in a subtle but characteristic
way. Blocking iPN output preserved the sigmoid shape of the
distance-discrimination function but displaced the foot of the
curve to the right, compressing the range of distances that eli-
cited a behavioral bias (Figures 6A and 6B; Table S5). Thus,
iPN output facilitates the discrimination of closely related ePN
activity patterns. Inhibition had no general effect on the attrac-
tiveness or repulsiveness of odors determined individually
against air (Figures 6D and S2A; Table S2).
However, the interpretation of this experiment is compli-

cated by the activity of the Mz699 enhancer element in a
group of 86 ± 1 neurons (mean ± SD, n = 4 hemispheres) in
the ventrolateral protocerebrum (vlpr) whose dendrites enter
the LH (Figures 5A and 5C; Movie S1). Because shits1 imposes
a transmission block on all neurons in which it is expressed in
stoichiometric amounts (Kitamoto, 2001), we cannot ascribe
the behavioral phenotype with confidence to a loss of iPN
inhibition; impairment of vlpr neurons remains a viable alterna-
tive. To eliminate this alternative, we manipulated the capacity
to synthesize and package the transmitter GABA, which is

Figure 4. Innate versus Trained Discrimination
Absolute decision bias scores of flies carrying mb247-LexA:lexAop-shits1

transgenes (mean ± SEM, n = 40–60 flies per data point) as functions

of Euclidean or cosine distances between ePN activity vectors. The distance-

discrimination functions obtained in Figure 2D are reproduced for reference.

(A) Innate discrimination at the restrictive temperature (32"C) when synaptic

output from KCs is blocked. Absolute decision bias scores as functions of

Euclidean (A1) or cosine (A2) distances between ePN activity vectors (mean ±

SEM, n = 30–60 flies per data point).

(B) Avoidance of the innately more aversive odor in a pair was reinforced during

a 1 min cycle of electric shock training at the permissive temperature (25"C).

After a 15 min rest interval, odor discrimination was analyzed at either the

permissive or the restrictive temperature when synaptic output from KCs is

intact (25"C, blue) or blocked (32"C, red). Absolute decision bias scores as

functions of Euclidean (B1) or cosine (B2) distances between ePN activity

vectors (mean ± SEM, n = 30–60 flies per data point).

See also Table S4 and Figure S4.
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Courtesy of Elsevier, Inc.,  http://www.sciencedirect.com. Used with permission.
Source: Parnas, Moshe, Andrew C. Lin, Wolf Huetteroth, and Gero Miesenböck. "Odor discrimination
in Drosophila: From neural population codes to behavior." Neuron 79, no. 5 (2013): 932-944.
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Figure 4. DAN activity is coordinated by external stimuli and behavioral state. a, sytGCaMP was expressed in DANs of all γ-lobe compartments 
and fly was fed sugar (top). Representative heat map images and timecourse of DANs evoked by sugar feeding (middle). Triggered averages aligned 
to start of sucrose ingestion (bottom) (n=10 traces in 9 flies). Fluorescence in other lobes masked for clarity. b, DAN response to an electric shock ap-
plied to the fly’s abdomen. Representative heat map images and timecourse of DANs evoked by electric shock (middle). Triggered averages aligned 
to electric shock (bottom) (n=21 traces in 11 flies). c, ATP injection activates γ4 and γ5 DANs expressing P2X2 under the R58E02 promoter. Rep-
resentative heat map images and timecourse of DANs evoked by ATP injection (middle). Triggered averages aligned to ATP stimulation (bottom) 
(n=34 traces in 8 flies). d, Representative fluorescence traces of γ lobe DANs aligned to fly’s motion (top). Bouts of flailing are highly correlated with 
increased activity in γ2 and γ3 DANs and decreased activity in γ4 and γ5 DANs (bottom, n = 12 traces in 6 flies). e, Schematic and video frames 
representing the fly in flailing (orange) and still (pink) behavioral states. f, Representative heat map images of DAN activity in response to initiation 
and stopping of flailing (left). Triggered averages of DAN fluorescence in each compartment aligned to the start and stop of flailing bouts (right, 
n=14 traces in 6 flies). g, Integrated basal DAN activity in each compartment (n=6 flies).
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later prioritize caloric contents. Similarly, ethanol exposure initially
acts as an aversive reinforcer, but eventually turns into reward and
induces LTM (51). The sequential regulation of appetitive behav-
ior by the same stimulus may be conserved across relevant appe-
titive stimuli. As palatability is not always a faithful predictor of its
nutritional value, it may be a general design of reward systems to
balance short-term benefit and long-term fitness.

Materials and Methods
The two GAL4 drivers, R48B04 and R15A04, were identified by screening our
confocal image database for PAM cluster neurons (40). Appetitive condition-
ing and reward substitution with thermoactivation were performed accord-
ing to previously described protocols of differential conditioning (19, 29, 30).
A group of flies received 1 min of odor exposure with sugar reward or
temperature-sensitive cation channel (dTrpA1)-mediated thermoactivation
of GAL4-expressing neurons, followed by a 1-min presentation of another

odor in the absence of reward or temperature elevation. Most of the data
did not violate the assumption of the normal distribution and the homo-
geneity of variance and were therefore subjected to parametric statistics.
For data that significantly deviated from the normal distribution (Figs. 3B
and 4I), nonparametric statistics were applied. Fluorescent immunohisto-
chemistry was performed as described previously (19, 29, 30). All of the
confocal images in the main figures underwent landmark matching-based
image registration using BrainAligner (59). For in vivo calcium imaging, fe-
male flies expressing GCaMP3 (60) with R48B04-GAL4 and R15A04-GAL4
were prepared essentially as described (19, 61). A droplet of 2 M sucrose, 3 M
arabinose, or a mixture of 3 M arabinose and 2 M sorbitol solution in mineral
water was delivered on a plastic plate controlled by a micromanipulator (19).
See SI Materials and Methods for more detailed experimental procedures.
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later prioritize caloric contents. Similarly, ethanol exposure initially
acts as an aversive reinforcer, but eventually turns into reward and
induces LTM (51). The sequential regulation of appetitive behav-
ior by the same stimulus may be conserved across relevant appe-
titive stimuli. As palatability is not always a faithful predictor of its
nutritional value, it may be a general design of reward systems to
balance short-term benefit and long-term fitness.

Materials and Methods
The two GAL4 drivers, R48B04 and R15A04, were identified by screening our
confocal image database for PAM cluster neurons (40). Appetitive condition-
ing and reward substitution with thermoactivation were performed accord-
ing to previously described protocols of differential conditioning (19, 29, 30).
A group of flies received 1 min of odor exposure with sugar reward or
temperature-sensitive cation channel (dTrpA1)-mediated thermoactivation
of GAL4-expressing neurons, followed by a 1-min presentation of another

odor in the absence of reward or temperature elevation. Most of the data
did not violate the assumption of the normal distribution and the homo-
geneity of variance and were therefore subjected to parametric statistics.
For data that significantly deviated from the normal distribution (Figs. 3B
and 4I), nonparametric statistics were applied. Fluorescent immunohisto-
chemistry was performed as described previously (19, 29, 30). All of the
confocal images in the main figures underwent landmark matching-based
image registration using BrainAligner (59). For in vivo calcium imaging, fe-
male flies expressing GCaMP3 (60) with R48B04-GAL4 and R15A04-GAL4
were prepared essentially as described (19, 61). A droplet of 2 M sucrose, 3 M
arabinose, or a mixture of 3 M arabinose and 2 M sorbitol solution in mineral
water was delivered on a plastic plate controlled by a micromanipulator (19).
See SI Materials and Methods for more detailed experimental procedures.

ACKNOWLEDGMENTS. We thank T. Templier and A. Abe for technical
assistance and experiments that inspired this study; P. Garrity, H. Amrein,
B. Pfeiffer, the Kyoto Drosophila Genetic Resource Center, and the
Bloomington Stock Center for fly stocks; K. Ito and the members of the

-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8

B

E

A

F

C

-4

0

lo
g 

P

-4

0

lo
g 

P

STM LTM

0

20

40

60

80

-0.2 0 0.2 0.4 0.6 0.8
0

20

40

60

80

-0.2 0 0.2 0.4 0.6 0.8

LTM (LI)

G
AL

4 
ex

pr
es

si
on

 (A
.U

.)

STM (LI)

**

G
AL

4 
ex

pr
es

si
on

 (A
.U

.)

STM (LI)

LT
M

 (L
I)

D

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

2min

24hrs

***

tneiciffeoc noitalerro
C

-0.100.10.20.30.40.5

MB299B/+
MB299B/UAS-Shi
UAS-Shi/+

-0.100.10.20.30.40.5

MB299B/+
MB299B/UAS-Shi
UAS-Shi/+

-0.100.10.20.30.40.5

MB299B/+
MB299B/UAS-Shi
UAS-Shi/+

-0.100.10.20.30.40.5

MB299B/+
MB299B/UAS-Shi
UAS-Shi/+

-0.1
0

0.1
0.2
0.3
0.4
0.5

-0.1
0

0.1
0.2
0.3
0.4
0.5

-0.1
0

0.1
0.2
0.3
0.4
0.5

-0.1
0

0.1
0.2
0.3
0.4
0.5

IH

J K

ns

2M Sucrose

33
°C

c  t

2min

ST
M

 (L
I)

** 25
   

33
°C c     t

0    24hrs

2M Sucrose

LT
M

 (L
I)

ns

3M Arabinose 3M Arabinose+
2M Sorbitol

*

ST
M

 (L
I)

LT
M

 (L
I)

G

L

33
°C

c  t

2min

25
   

33
°C

c     t

0    24hrs

stm-PAM

sugar

sweetness nutrition

octopamine Gr43a

α1

STM LTM

MB299Bβ2 α1
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association between STM and LTM (n = 20). (B and C) GAL4 expression levels in each PAM cell type plotted against learning indices of appetitive STM (B) or
LTM (C) of all 20 SplitGAL4 lines. Different colors and markers indicate different cell types. Linear regression is shown together for PAM-α1, which marked
significant positive association with LTM (C). (D) Correlation coefficient of GAL4 expression level versus STM and LTM in each cell type. (E and F) Color map of
logarithm of P values calculated from correlation analyses of GAL4 expression and learning indices of STM (E ) or LTM (F). (G) Expression pattern of MB299B-
GAL4 shown in a standardized brain. (Scale bar, 20 μm.) (H and I) Blockade of the PAM-α1 neurons by MB299B-GAL4 during memory acquisition with sucrose
tested immediately (H) or 24 h later (I). n = 6–12. c, conditioning; t, training. Results with error bars are means ± SEM. **P < 0.01; ns, not significant. (J and K)
Blockade of the PAM-α1 neurons has no significant effects during acquisition of arabinose memory tested immediately (J) but impairs formation of 24-h
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nutrition are independently conveyed by octopamine or Gr43a neurons to distinct subclusters of the PAM cluster. The stm-PAM neurons collectively mediate
reinforcement signal of STM. In contrast, the reinforcement signal of LTM is mainly conveyed by the PAM-α1 neurons.
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