
 

 

 

 
 

 

 
 

       

Leaky Integrate and Fire   

Exercise: Leaky integrate and fire model of neural spike generation 
  
This exercise investigates a simplified model of how neurons spike in response to current inputs,  
one of the most fundamental properties of neurons. The leaky integrate and fire model is based  
on the simple resistor-capacitor (RC) circuit that you will learn about here, with an extra rule: the  
model neuron spikes whenever the membrane potential surpasses a threshold. It is a simple and  
useful model, but ignores the detailed biophysical mechanisms behind spiking. In reality, neurons  
spike because of voltage-dependent ion channels. Besides these simplifications and apparent  
limitations the leaky integrate and fire is a useful model to understand how neurons respond to a  
current input.  

Our intuition tells us that the rate at which spikes are produced is positively correlated with the  
strength of the input current delivered to the cell. We also understand that neurons cannot fire  
arbitrarily fast, so this correlation is limited by saturation and refractoriness. 
  
In this exercise we will quantify the relation between input strength and firing rate. We will  
visualize this relation by plotting an f-I curve (also called an activation function). This curve  
describes the firing rate of a neuron (f, the number of spikes per second) as a function of injected  
input current I. Additionally, we will analyze the distribution of the inter-spike intervals (the timings  
between successive spikes) for different input currents.  

Part 1: RC passive model of a cell: Building the model 

In general we can model the membrane of a neuron as an RC circuit illustrated in Figure 1. There  
we depict the different electrical components, which are described in what follows.  
  

Figure 1:  Equivalent electric (RC) circuit of a neurons’ membrane 

  
The cell membrane provides electrical insulation between the intracellular fluid and extracellular  
fluid that are two conductive media. This creates a capacitor, a device that accumulates charge  
across the membrane and therefore has the ability to integrate inputs over time. The input is  
represented by a current source (IE). Remember that an integral is roughly a sum. In this  
particular case the capacitor has the ability to add up charge over time and therefore builds up a  
voltage difference across the membrane (Vm) that we refer as the membrane potential.   
  
The capacitor has a capacitance proportional to the cell’s surface area (A). A cell’s total  
membrane capacitance (Cm) can be calculated as follows:  

C  c A (1.1) m m 
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where cm is the specific membrane capacitance. Here, we assume cm to be 10 nF/mm2.  
  
The current through the capacitor (IC) is given by the following expression:  
  

dV mIC  Cm (1.2)
dt 

The cell membrane is not a perfect insulator. Pores in the membrane l allow ions to move across  
it and therefore the charge that was built up across the capacitor has a way to leak out. This  
explains the name “leaky integrator.”  
  
A cell’s total membrane conductance (Gm) represents how easily ions flow across the membrane.  
Recall that conductance and resistance are inversely related to each other ( R  1/ G ). Note  m m 
that the total conductance is also proportional to the cell’s area, given by the following formula:  
  

Gm  gmA (1.3) 
  

where gm  is the specific membrane conductance. Here, we assume gm to be 0.5  
  
You probably noticed that the resistor Rm is wired to a battery in Figure 1, which supplies a  
voltage EL. This is to reflect the resting membrane potential of the neuron. In other words,  
neurons have a membrane potential difference across the membrane even when no electrical  
stimulation is applied. Therefore, EL models this resting potential.  
  
Next, Ohm’s law gives the leakage current (IL) through the resistor Rm:  
  

V  E
I  m L (1.4) L R m 

Finally, Kirchhoff’s current law states that sum of current flowing into a junction/node must be  
equal to the sum of currents flowing out of that node. By looking at Figure 1 we can see that:  
  

I  I  I (1.5) C L E 
  
Thus, applying equations 1.3 and 1.4 to 1.5 we obtain the following:  
  

dV V  Em m LCm   IE (1.6)  
dt R m 

which is a first-order, linear and autonomous ordinary differential equation.  
  
Review questions: 
  
Consider a spherical model neuron of radius 0.04 mm and the cm and gm values given in the 

®preceding section. Write MATLAB   code to answer the following questions:  
  

1.  What is the total surface area of this cell? Recall that the surface area of a sphere is  
A  4r 2, where r is the sphere’s radius.  
  

2.  Calculate the total membrane capacitance (Cm).  
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3.  Calculate the total membrane conductance Gm and the total membrane resistance Rm.  

Part 2: Dynamics of the RC model 
  
So far we have a differential equation (1.6) that relates changes in applied external current to  
changes in the membrane potential. This section focuses on how to numerically solve this  
equation to understand how the neurons’ membrane potential changes over time. The idea is to  
find a function Vm(t) that solves equation 1.6 for any arbitrary applied current.  
  
The RC neuron response to an injected input current IE is prescribed by the differential equation  
1.6. After some rearrangement equation 1.6 can be rewritten as:  

dV mV (t) E R I (2.1)  m m L m Edt  
where Vm(t) is the membrane potential at time t, Rm is the membrane resistance, Cm is the  
membrane capacitance, IE(t) is the current injected, and   R C  is the membrane time  m m m 
constant. EL is the resting membrane potential also known as the reversal potential of the leakage  
current (the current through resistor Rm). We call this the resting potential because when there is  
no input current and the voltage is not changing, the membrane voltage is equal to EL. You can  
verify this by setting dVm/dt and IE(t) to 0. 

In the absence of input current this passive model of a cell relaxes exponentially to membrane  
potential EL. Alternatively, when input current is supplied this modeled cell relaxes exponentially  
towards  E R I (t).  L m E 
  
So far we have a qualitative understanding on how this model responds to input currents.  
However, we would like to track the membrane potential as a function of time for any arbitrary  
input current. One way to do so is to approximate this differential equation by a difference  
equation, and use the computer to numerically integrate and find the solution for the membrane  
potential. To do so, we will rewrite dVm as V (t t) V(t)  and replace dt by  t , which after  m 
some rearranging leads to the following difference equation:  
  

t EL Vm (t)RmIE (t)V (t t) V (t) (2.2)  m m  m 

where  t   is the integration time-step, i.e. the time elapsed from t to  t t . If the time-step is  
sufficiently small, the difference equation 2.2 provides a faithful representation of the differential  
equation 2.1.  
  
If we know the parameters and the membrane potential at time 0 (known as the initial condition  
V0 V(t=0)) we can find the membrane potential trajectory for any given input current.   
  
As described this model is unable to generate spikes. In the following section we build on this  
model to generate a simplified version of a spiking cell.  
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Part 3: The leaky integrate and fire model 

The RC model alone cannot produce action potentials as we have discussed in Parts 1 and 2.  
Nonetheless we can mimic spiking behavior by setting an additional rule: that the modeled  
neuron emits a spike whenever the membrane potential crosses a threshold value Vth. After each  
spike, we will reset the membrane voltage to a value Vreset below threshold, and the model will  
continue to integrate the input from there. In this model there is no mechanistic/biophysical  
description of the action potentials. We just introduced a fire and reset rule after threshold  
crossing. This constitutes the leaky integrate and fire model.   
  
The membrane potential of this model neuron is described by the same differential equation as  
the RC passive model of a cell described in Part 1 and therefore can be approximated by  
equation 2.2. In the following we will study this model via numerical simulations. During  
simulations it is convenient to keep track of the membrane potential and of spiking behavior. The  
latter can be tracked by introducing a vector that is zero whenever the membrane potential is  
below threshold and gets a value 1 when the membrane potential crosses threshold. This  
representation is called a binary spike train.  
  
For our simulations we will consider a leaky integrate and fire model with the following  
parameters:  
  

R  100 M C  200 pF E  70 mV m m L 

V  60 mV V  Eth reset L  
We will set the initial condition and integration time-step for equation 1.4 as follows:  
  

V0  EL t  0.01msec 

4.  Implement the leaky integrate and fire model as a MATLAB function named myLIF. This  
function takes as input: (1) the parameters of the model, (2) the time-step and initial  
condition1, and (3) a scalar that sets the amplitude of the injected current. This function  
produces two outputs: (1) the membrane potential obtained by iteratively solving equation  
1.4 with the explained fire and reset rules, and (2) a binary spike train.   

  
5.  Let’s try the function you just wrote. Examine the output of the model neuron to a constant  

current of 150 pA that is applied for 0.5 seconds. Plot the membrane potential as a  
function of time. What is the firing rate of this neuron (i.e. the number of spikes per  
second)?   

  
6. Compute  the inter-spike intervals (the time between two subsequent spikes). The  

MATLAB functions find and diff may be helpful. Is this an irregular or regular firing  
neuron?   

  
7.  How would you estimate the mean firing rate from the ISIs?   

  
A key characteristic of neurons is their refractory period. This refers to a brief rest period after an  
action potential is fired, when the neuron is unable to fire again.  We can add a refractory period  
to the leaky integrate and fire model by holding the membrane potential at Vreset for the duration of  
the refractory period after each spike.  

1 The parameters, initial condition and time-step can be incorporated into a structure to make the function  
call shorter.  

4  



 

 

  
  
 

 

Leaky Integrate and Fire   

8.  Make a copy of your myLIF function and call it myLIFref. Revise this new function to  
include a refractory period (tref) of 3 msec.  
  

9.  Examine the output of the model neuron to a constant current of 150 pA that is applied for  
0.5 seconds. Plot the membrane potential as a function of time and check that your  
refractory period is properly working (zoom into your plot to verify this).   

  
10. What is the firing rate of this neuron? How does it compare to the model without a   

refractory?   
  
For the reminder of this exercise we will continue to use the LIF model with a refractory period of  
3 msec.  
  
Next, we will compute the f-I curve for this neuron. Remember that this curve describes the firing  
rate of a neuron (f, the number of spikes per second) as a function of injected input current I. To  
do so we need to examine the behavior of our model cell with currents of different amplitudes. We  
will test currents in the interval 0 to 500 pA in increments of 10 pA. Each current step will be  
applied for 1 second.   
  

11.  Use your myLIFref function to compute the f-I curve of this neuron. Plot the firing rate  
(number of spikes per second) as a function of current amplitude. What is the minimum  
current that will elicit a spike?  

  
In the case of the leaky integrate and fire model the f-I curve has a closed analytical expression:  
  

  EVth L 

 

0 




t 

if IE  
R m

f (IE )  (2.3)  
  1 

 E V  EVth 

R 
R I 

  
 

 

L 

12. Plot the simulated and theoretical curves on the same figure. (Use the MATLAB  
commands hold on and hold off to do so.) Use a line for the theoretical curve and  
squares for the results of your simulation. To plot square markers, add ‘s’ to your plotting  
command, e.g. plot(X,Y,'s').  
  

13. Do the simulations match the analytical expression?   
  

14. Repeat your simulations with input currents in the range 0 to 10000 pA in increments of  
100 pA. Redo the plot for the simulated and theoretical curves. What is the theoretical  
maximum firing rate this neuron can achieve? How is it related to the refractory period of  
your neuron?   

  
15. Include this maximum theoretical value as a black dashed line asymptote in your previous  

plot. To do so you can type in MATLAB plot(X,Y,'--k').  
  

Part 4: Introducing variability in the spike times 

So far our model is able to produce regular spiking, as all the ISI sequence values are identical. A  
simple way to make our model more realistic is to inject a noisy current so that the times of  
threshold crossing are not so easily predictable. This will introduce variability in the ISIs that can  
be captured in an ISI distribution histogram.   

E Lln  if IE  reset 

R mIE  EL Vth 

m
 

ref m  
 m 
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A simple way to introduce a noisy current is by randomly selecting at each time-step a current  
value from a Gaussian distribution with mean Ie and standard deviation  . The MATLAB noise 

function randn will be helpful for generating noisy currents.  
  
Let’s visualize the effect of this noisy current by running a simulation example   
  

16. Make a copy of your myLIFref function and name it myLIFnoise. Modify the new copy  
to use random stimulation. This function takes an extra input argument that sets the  
standard deviation of the noisy current. Use the myLIFnoise function to stimulate your  
cell for 10 seconds with a noisy current that has a Gaussian distribution with mean   
IE = 200pA and standard deviation   200pA. Plot a histogram (commands hist, noise

histc and bar will be helpful) of the ISI distribution. Compute the mean and standard  
deviation of the ISI distribution.  

  
Next, let’s explore the effect of  more systematically. To do so we will run a set of  noise 

simulations of 10 seconds each where the mean of the noise is fixed but the standard deviation is  
increased. We will use Gaussian noise with mean Ie = 200pA and will test values of standard  
deviation in the range 0 to 400pA in increments of 50 pA.  
  

17. Using subplot, make a nine-panel figure window. From left to right plot the ISI  
distribution for increasing values of  . To facilitate visual comparison of the plots  noise 

make sure that the scales on the x-axes are the same across panels (the command xlim  
will be helpful) and that you use the same binning for all your histograms.  
  

18. Let us quantify the effect of noise on firing rate using simple statistics. Make a two-panel  
figure window. In the left panel plot the mean ISI as a function of the magnitude of  . noise 

On the right panel plot the standard deviation of the ISI as a function of  . Interpret noise 

these plots.  
  

19. Can you predict how the noise in the input current will affect the shape of the f-I curve?  
  

20. To test your prediction compute and plot the f-I curve as described in point 11 but set  
 to 400 pA. What has changed with respect to the noiseless case? Why do you think  noise 

people say this curve has a “soft threshold”?  
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