

Leaky Integrate and Fire

Exercise: Leaky integrate and fire model of neural spike generation

This exercise investigates a simplified model of how neurons spike in response to current inputs,
one of the most fundamental properties of neurons. The leaky integrate and fire model is based
on the simple resistor-capacitor (RC) circuit that you will learn about here, with an extra rule: the
model neuron spikes whenever the membrane potential surpasses a threshold. It is a simple and
useful model, but ignores the detailed biophysical mechanisms behind spiking. In reality, neurons
spike because of voltage-dependent ion channels. Besides these simplifications and apparent
limitations the leaky integrate and fire is a useful model to understand how neurons respond to a
current input.

Our intuition tells us that the rate at which spikes are produced is positively correlated with the
strength of the input current delivered to the cell. We also understand that neurons cannot fire
arbitrarily fast, so this correlation is limited by saturation and refractoriness.

In this exercise we will quantify the relation between input strength and firing rate. We will
visualize this relation by plotting an f-I curve (also called an activation function). This curve
describes the firing rate of a neuron (f, the number of spikes per second) as a function of injected
input current I. Additionally, we will analyze the distribution of the inter-spike intervals (the timings
between successive spikes) for different input currents.

Part 1: RC passive model of a cell: Building the model

In general we can model the membrane of a neuron as an RC circuit illustrated in Figure 1. There
we depict the different electrical components, which are described in what follows.

Figure 1: Equivalent electric (RC) circuit of a neurons’ membrane

The cell membrane provides electrical insulation between the intracellular fluid and extracellular
fluid that are two conductive media. This creates a capacitor, a device that accumulates charge
across the membrane and therefore has the ability to integrate inputs over time. The input is
represented by a current source (IE). Remember that an integral is roughly a sum. In this
particular case the capacitor has the ability to add up charge over time and therefore builds up a
voltage difference across the membrane (Vm) that we refer as the membrane potential.

The capacitor has a capacitance proportional to the cell’s surface area (A). A cell’s total
membrane capacitance (Cm) can be calculated as follows:

C  c A (1.1) m m

1

Leaky Integrate and Fire

.

where cm is the specific membrane capacitance. Here, we assume cm to be 10 nF/mm2.

The current through the capacitor (IC) is given by the following expression:

dV mIC  Cm (1.2)
dt

The cell membrane is not a perfect insulator. Pores in the membrane l allow ions to move across
it and therefore the charge that was built up across the capacitor has a way to leak out. This
explains the name “leaky integrator.”

A cell’s total membrane conductance (Gm) represents how easily ions flow across the membrane.
Recall that conductance and resistance are inversely related to each other (R  1/ G). Note m m
that the total conductance is also proportional to the cell’s area, given by the following formula:

Gm  gmA (1.3)

where gm is the specific membrane conductance. Here, we assume gm to be 0.5

You probably noticed that the resistor Rm is wired to a battery in Figure 1, which supplies a
voltage EL. This is to reflect the resting membrane potential of the neuron. In other words,
neurons have a membrane potential difference across the membrane even when no electrical
stimulation is applied. Therefore, EL models this resting potential.

Next, Ohm’s law gives the leakage current (IL) through the resistor Rm:

V  E
I  m L (1.4) L R m

Finally, Kirchhoff’s current law states that sum of current flowing into a junction/node must be
equal to the sum of currents flowing out of that node. By looking at Figure 1 we can see that:

I  I  I (1.5) C L E

Thus, applying equations 1.3 and 1.4 to 1.5 we obtain the following:

dV V  Em m LCm   IE (1.6)
dt R m

which is a first-order, linear and autonomous ordinary differential equation.

Review questions:

Consider a spherical model neuron of radius 0.04 mm and the cm and gm values given in the

®preceding section. Write MATLAB code to answer the following questions:

1. What is the total surface area of this cell? Recall that the surface area of a sphere is
A  4r 2, where r is the sphere’s radius.

2. Calculate the total membrane capacitance (Cm).

2

=

Leaky Integrate and Fire

3. Calculate the total membrane conductance Gm and the total membrane resistance Rm.

Part 2: Dynamics of the RC model

So far we have a differential equation (1.6) that relates changes in applied external current to
changes in the membrane potential. This section focuses on how to numerically solve this
equation to understand how the neurons’ membrane potential changes over time. The idea is to
find a function Vm(t) that solves equation 1.6 for any arbitrary applied current.

The RC neuron response to an injected input current IE is prescribed by the differential equation
1.6. After some rearrangement equation 1.6 can be rewritten as:

dV mV (t) E R I (2.1) m m L m Edt
where Vm(t) is the membrane potential at time t, Rm is the membrane resistance, Cm is the
membrane capacitance, IE(t) is the current injected, and   R C is the membrane time m m m
constant. EL is the resting membrane potential also known as the reversal potential of the leakage
current (the current through resistor Rm). We call this the resting potential because when there is
no input current and the voltage is not changing, the membrane voltage is equal to EL. You can
verify this by setting dVm/dt and IE(t) to 0.

In the absence of input current this passive model of a cell relaxes exponentially to membrane
potential EL. Alternatively, when input current is supplied this modeled cell relaxes exponentially
towards E R I (t). L m E

So far we have a qualitative understanding on how this model responds to input currents.
However, we would like to track the membrane potential as a function of time for any arbitrary
input current. One way to do so is to approximate this differential equation by a difference
equation, and use the computer to numerically integrate and find the solution for the membrane
potential. To do so, we will rewrite dVm as V (t t) V(t) and replace dt by t , which after m
some rearranging leads to the following difference equation:

t EL Vm (t)RmIE (t)V (t t) V (t) (2.2) m m  m

where t is the integration time-step, i.e. the time elapsed from t to t t . If the time-step is
sufficiently small, the difference equation 2.2 provides a faithful representation of the differential
equation 2.1.

If we know the parameters and the membrane potential at time 0 (known as the initial condition
V0 V(t=0)) we can find the membrane potential trajectory for any given input current.

As described this model is unable to generate spikes. In the following section we build on this
model to generate a simplified version of a spiking cell.

3

Leaky Integrate and Fire

Part 3: The leaky integrate and fire model

The RC model alone cannot produce action potentials as we have discussed in Parts 1 and 2.
Nonetheless we can mimic spiking behavior by setting an additional rule: that the modeled
neuron emits a spike whenever the membrane potential crosses a threshold value Vth. After each
spike, we will reset the membrane voltage to a value Vreset below threshold, and the model will
continue to integrate the input from there. In this model there is no mechanistic/biophysical
description of the action potentials. We just introduced a fire and reset rule after threshold
crossing. This constitutes the leaky integrate and fire model.

The membrane potential of this model neuron is described by the same differential equation as
the RC passive model of a cell described in Part 1 and therefore can be approximated by
equation 2.2. In the following we will study this model via numerical simulations. During
simulations it is convenient to keep track of the membrane potential and of spiking behavior. The
latter can be tracked by introducing a vector that is zero whenever the membrane potential is
below threshold and gets a value 1 when the membrane potential crosses threshold. This
representation is called a binary spike train.

For our simulations we will consider a leaky integrate and fire model with the following
parameters:

R  100 M C  200 pF E  70 mV m m L

V  60 mV V  Eth reset L
We will set the initial condition and integration time-step for equation 1.4 as follows:

V0  EL t  0.01msec

4. Implement the leaky integrate and fire model as a MATLAB function named myLIF. This
function takes as input: (1) the parameters of the model, (2) the time-step and initial
condition1, and (3) a scalar that sets the amplitude of the injected current. This function
produces two outputs: (1) the membrane potential obtained by iteratively solving equation
1.4 with the explained fire and reset rules, and (2) a binary spike train.

5. Let’s try the function you just wrote. Examine the output of the model neuron to a constant

current of 150 pA that is applied for 0.5 seconds. Plot the membrane potential as a
function of time. What is the firing rate of this neuron (i.e. the number of spikes per
second)?

6. Compute the inter-spike intervals (the time between two subsequent spikes). The

MATLAB functions find and diff may be helpful. Is this an irregular or regular firing
neuron?

7. How would you estimate the mean firing rate from the ISIs?

A key characteristic of neurons is their refractory period. This refers to a brief rest period after an
action potential is fired, when the neuron is unable to fire again. We can add a refractory period
to the leaky integrate and fire model by holding the membrane potential at Vreset for the duration of
the refractory period after each spike.

1 The parameters, initial condition and time-step can be incorporated into a structure to make the function
call shorter.

4

Leaky Integrate and Fire

8. Make a copy of your myLIF function and call it myLIFref. Revise this new function to
include a refractory period (tref) of 3 msec.

9. Examine the output of the model neuron to a constant current of 150 pA that is applied for
0.5 seconds. Plot the membrane potential as a function of time and check that your
refractory period is properly working (zoom into your plot to verify this).

10. What is the firing rate of this neuron? How does it compare to the model without a

refractory?

For the reminder of this exercise we will continue to use the LIF model with a refractory period of
3 msec.

Next, we will compute the f-I curve for this neuron. Remember that this curve describes the firing
rate of a neuron (f, the number of spikes per second) as a function of injected input current I. To
do so we need to examine the behavior of our model cell with currents of different amplitudes. We
will test currents in the interval 0 to 500 pA in increments of 10 pA. Each current step will be
applied for 1 second.

11. Use your myLIFref function to compute the f-I curve of this neuron. Plot the firing rate
(number of spikes per second) as a function of current amplitude. What is the minimum
current that will elicit a spike?

In the case of the leaky integrate and fire model the f-I curve has a closed analytical expression:

  EVth L



0




t

if IE 
R m

f (IE)  (2.3)
  1

 E V  EVth

R
R I

 




L

12. Plot the simulated and theoretical curves on the same figure. (Use the MATLAB
commands hold on and hold off to do so.) Use a line for the theoretical curve and
squares for the results of your simulation. To plot square markers, add ‘s’ to your plotting
command, e.g. plot(X,Y,'s').

13. Do the simulations match the analytical expression?

14. Repeat your simulations with input currents in the range 0 to 10000 pA in increments of
100 pA. Redo the plot for the simulated and theoretical curves. What is the theoretical
maximum firing rate this neuron can achieve? How is it related to the refractory period of
your neuron?

15. Include this maximum theoretical value as a black dashed line asymptote in your previous

plot. To do so you can type in MATLAB plot(X,Y,'--k').

Part 4: Introducing variability in the spike times

So far our model is able to produce regular spiking, as all the ISI sequence values are identical. A
simple way to make our model more realistic is to inject a noisy current so that the times of
threshold crossing are not so easily predictable. This will introduce variability in the ISIs that can
be captured in an ISI distribution histogram.

E Lln if IE  reset

R mIE  EL Vth

m


ref m 
 m

5

Leaky Integrate and Fire

A simple way to introduce a noisy current is by randomly selecting at each time-step a current
value from a Gaussian distribution with mean Ie and standard deviation  . The MATLAB noise

function randn will be helpful for generating noisy currents.

Let’s visualize the effect of this noisy current by running a simulation example

16. Make a copy of your myLIFref function and name it myLIFnoise. Modify the new copy
to use random stimulation. This function takes an extra input argument that sets the
standard deviation of the noisy current. Use the myLIFnoise function to stimulate your
cell for 10 seconds with a noisy current that has a Gaussian distribution with mean
IE = 200pA and standard deviation  200pA. Plot a histogram (commands hist, noise

histc and bar will be helpful) of the ISI distribution. Compute the mean and standard
deviation of the ISI distribution.

Next, let’s explore the effect of  more systematically. To do so we will run a set of noise

simulations of 10 seconds each where the mean of the noise is fixed but the standard deviation is
increased. We will use Gaussian noise with mean Ie = 200pA and will test values of standard
deviation in the range 0 to 400pA in increments of 50 pA.

17. Using subplot, make a nine-panel figure window. From left to right plot the ISI
distribution for increasing values of  . To facilitate visual comparison of the plots noise

make sure that the scales on the x-axes are the same across panels (the command xlim
will be helpful) and that you use the same binning for all your histograms.

18. Let us quantify the effect of noise on firing rate using simple statistics. Make a two-panel
figure window. In the left panel plot the mean ISI as a function of the magnitude of  . noise

On the right panel plot the standard deviation of the ISI as a function of  . Interpret noise

these plots.

19. Can you predict how the noise in the input current will affect the shape of the f-I curve?

20. To test your prediction compute and plot the f-I curve as described in point 11 but set
 to 400 pA. What has changed with respect to the noiseless case? Why do you think noise

people say this curve has a “soft threshold”?

6

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course
Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
http:https://ocw.mit.edu

